Nemotron-Flash-3B-Instruct / modeling_fast_slm.py
YongganFu's picture
Upload FastSLMForCausalLM
5fbddec verified
raw
history blame
103 kB
# coding=utf-8
# Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch FastSLM model."""
import inspect
import math
import copy
import warnings
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Tuple, Union
import time
from collections import OrderedDict
from functools import partial
import numpy as np
import os
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
torch._inductor.config.max_autotune_gemm_backends = ["aten"]
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_outputs import (
MoeCausalLMOutputWithPast,
MoeModelOutputWithPast,
SequenceClassifierOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
try:
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
except ImportError:
pass
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_13
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
from transformers.utils.import_utils import is_torch_fx_available
from .configuration_fast_slm import FastSLMConfig
from torch.utils.checkpoint import checkpoint
import torch.distributed as dist
import math
import random
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
from einops import rearrange, repeat, reduce, pack, unpack
from einops.layers.torch import Rearrange
from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
from .fused_mha_with_cache import fused_mha_interface
from .mamba2 import Mamba2
from mamba_ssm.utils.generation import InferenceParams
from .delta_net import Cache as fla_cache
from .delta_net import DeltaNet
import torch._dynamo
torch._dynamo.config.suppress_errors = True
from torch.cuda import CUDAGraph
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "FastSLMConfig"
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
### Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->FastSLM
class FastSLMRMSNorm(nn.Module):
def __init__(self, hidden_size, learnable_weight=True, eps=1e-6):
"""
FastSLMRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
if learnable_weight:
self.weight = nn.Parameter(torch.ones(hidden_size))
else:
self.weight = None
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
if self.weight is not None:
return self.weight * hidden_states.to(input_dtype)
else:
return hidden_states.to(input_dtype)
class LlamaRotaryEmbedding(nn.Module):
def __init__(self, config, dim, base=10000, device=None, scaling_factor=1.0):
super().__init__()
self.scaling_factor = scaling_factor
self.dim = dim
self.base = base
self.config = config
self.rope_type = config.rope_type
self.factor = 2
max_position_embeddings = self.config.max_position_embeddings
if config.rope_type is None or config.rope_type == "default":
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
self.max_seq_len_cached = max_position_embeddings
elif config.rope_type == 'ntk':
assert self.config.orig_max_position_embeddings is not None
orig_max_position_embeddings = self.config.orig_max_position_embeddings
base = base * ((self.factor * max_position_embeddings / orig_max_position_embeddings) - (self.factor - 1)) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
self.max_seq_len_cached = orig_max_position_embeddings
elif config.rope_type == 'dynamic_ntk':
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
self.original_inv_freq = inv_freq
self.max_seq_len_cached = self.config.orig_max_position_embeddings
else:
raise ValueError(f"Not support rope_type: {config.rope_type}")
self.register_buffer("inv_freq", inv_freq, persistent=False)
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
base = self.base * ((self.factor * seq_len / self.config.orig_max_position_embeddings) - (self.factor - 1)) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.max_seq_len_cached = seq_len
if seq_len < self.config.orig_max_position_embeddings and self.max_seq_len_cached > self.config.orig_max_position_embeddings: # reset
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.config.orig_max_position_embeddings
@torch.no_grad()
def forward(self, x, position_ids):
if self.rope_type == 'dynamic_ntk':
self._dynamic_frequency_update(position_ids, device=x.device)
# x: [bs, num_attention_heads, seq_len, head_size]
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 since bfloat16 loses precision on long contexts
# See https://github.com/huggingface/transformers/pull/29285
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
if q is not None:
q_embed = (q * cos) + (rotate_half(q) * sin)
else:
q_embed = None
if k is not None:
k_embed = (k * cos) + (rotate_half(k) * sin)
else:
k_embed = None
return q_embed, k_embed
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class HybridMambaAttentionDynamicCache(DynamicCache):
"""
A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache
(which has a constant shape regardless of seq_len).
This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states`
and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor
For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`,
while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors).
For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors),
while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`,
and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`.
"""
def __init__(self, config, batch_size, dtype=torch.float16, device=None, layer_type=None):
self.dtype = dtype
# self.layers_block_type = config.layers_block_type
intermediate_size = config.mamba_expand * config.hidden_size
ssm_state_size = config.mamba_d_state
conv_kernel_size = config.mamba_d_conv
self.conv_states = []
self.ssm_states = []
self.layer_type = layer_type
for i in range(config.num_hidden_layers):
has_mamba_state = self.layer_type[i] == 'h' or self.layer_type[i] == 'm'
if has_mamba_state:
if hasattr(config, 'conv_dim'):
conv_dim = config.conv_dim[str(i)]
else:
conv_dim = intermediate_size
self.conv_states += [
torch.zeros(batch_size, conv_dim, conv_kernel_size, device=device, dtype=dtype)
]
self.ssm_states += [
torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=dtype)
]
else:
self.conv_states += [torch.tensor([[]] * batch_size, device=device)]
self.ssm_states += [torch.tensor([[]] * batch_size, device=device)]
self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
self.mamba_past_length = [0 for _ in range(config.num_hidden_layers)]
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Update the cache
if self.key_cache[layer_idx].shape[-1] == 0:
self.key_cache[layer_idx] = key_states
self.value_cache[layer_idx] = value_states
else:
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2)
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2)
return self.key_cache[layer_idx], self.value_cache[layer_idx]
def reorder_cache(self, beam_idx: torch.LongTensor):
"""Reorders the cache for beam search, given the selected beam indices."""
for layer_idx in range(len(self.key_cache)):
device = self.key_cache[layer_idx].device
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
device = self.value_cache[layer_idx].device
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
device = self.conv_states[layer_idx].device
self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device))
device = self.ssm_states[layer_idx].device
self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device))
def get_seq_length(self, layer_idx=None) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
# take any layer that contains cache and not empty tensor
if layer_idx is None:
max_mamba_len = max(self.mamba_past_length)
if max_mamba_len > 0:
return max_mamba_len
else:
max_key_len = max(cache.shape[-2] for cache in self.key_cache)
return max_key_len
if self.layer_type[layer_idx] == 'm':
return self.mamba_past_length[layer_idx]
if self.key_cache[layer_idx].shape[-1] == 0:
return 0
return self.key_cache[layer_idx].shape[-2]
# def get_max_length(self) -> Optional[int]:
# """Returns the maximum sequence length of the cached states. Cache does not have a maximum length."""
# return None
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")
@classmethod
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")
@dataclass
class MambaCacheParams:
seqlen_offset: int = 0
conv_states: Dict[int, torch.Tensor] = field(default_factory=dict)
ssm_states: Dict[int, torch.Tensor] = field(default_factory=dict)
# Adapted from transformers.models.mistral.modeling_mistral.MistralAttention with Mistral->FastSLM
class FastSLMAttention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
and "Generating Long Sequences with Sparse Transformers".
"""
def __init__(self, config: FastSLMConfig, layer_idx: Optional[int] = None, input_hidden_size=None, output_hidden_size=None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
# self.hidden_size = config.hidden_size
self.hidden_size = config.attn_hidden_size if config.attn_hidden_size > 0 else config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.kq_head_dim = config.kq_head_dim if config.kq_head_dim > 0 else self.head_dim
self.v_head_dim = config.v_head_dim if config.v_head_dim > 0 else self.head_dim
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.is_causal = True
self.attention_dropout = config.attention_dropout
if (self.head_dim * self.num_heads) != self.hidden_size and self.kq_head_dim == self.head_dim:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size if input_hidden_size is None else input_hidden_size, self.num_heads * self.kq_head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size if input_hidden_size is None else input_hidden_size, self.num_key_value_heads * self.kq_head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size if input_hidden_size is None else input_hidden_size, self.num_key_value_heads * self.v_head_dim, bias=False)
if output_hidden_size is None:
output_hidden_size = self.hidden_size
self.o_proj = nn.Linear(self.num_heads * self.v_head_dim, output_hidden_size, bias=False)
if self.config.kq_norm == "rms":
self.k_norm = FastSLMRMSNorm(self.kq_head_dim)
self.q_norm = FastSLMRMSNorm(self.kq_head_dim)
elif self.config.kq_norm == "none":
self.k_norm = None
self.q_norm = None
else:
raise NotImplementedError(f"Unknown kq_norm: {self.config.kq_norm}")
if self.config.rope:
# print("===> Using Rotary Position Embedding")
self._init_rope()
def _init_rope(self):
# assert 1==0, f"max_position_embeddings: {self.max_position_embeddings}"
self.rotary_emb = LlamaRotaryEmbedding(
config=self.config,
dim=self.kq_head_dim,
base=self.rope_theta,
device=torch.device("cuda"),
)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
# kv_proj_last_layer = None,
use_swa=False,
query_states = None,
key_states=None,
value_states=None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
raise NotImplementedError("FastSLMAttention is an abstract class. Use one of the subclasses.")
# Adapted from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->FastSLM
class FastSLMFlashAttention2(FastSLMAttention):
"""
FastSLM flash attention module. This module inherits from `FastSLMAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
# kv_proj_last_layer = None,
use_swa=False,
query_states = None,
key_states=None,
value_states=None,
**kwargs,
):
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
# overwrite attention_mask with padding_mask
attention_mask = kwargs.pop("padding_mask")
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.kq_head_dim).transpose(1, 2).contiguous()
if self.q_norm is not None:
query_states = self.q_norm(query_states)
# we do kq_norm first before rope according to
# https://github.com/huggingface/transformers/blob/6c1d0b069de22d7ed8aa83f733c25045eea0585d/src/transformers/models/cohere/modeling_cohere.py#L568
if self.config.rope:
cos, sin = self.rotary_emb(hidden_states, position_ids)
query_states, _ = apply_rotary_pos_emb(query_states, None, cos, sin)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.kq_head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.v_head_dim).transpose(1, 2)
if self.k_norm is not None:
key_states = self.k_norm(key_states)
if self.config.rope:
_, key_states = apply_rotary_pos_emb(None, key_states, cos, sin)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
use_sliding_windows = (
_flash_supports_window_size
and getattr(self.config, "sliding_window", None) is not None
# and kv_seq_len > (self.config.sliding_window + self.config.num_memory_tokens if self.config.num_memory_tokens > 0 else self.config.sliding_window)
and kv_seq_len > self.config.sliding_window
and use_swa
)
if not _flash_supports_window_size:
logger.warning_once(
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
" make sure to upgrade flash-attn library."
)
swa_processed_flag = False
if past_key_value is not None and use_cache:
kv_layer_idx = self.layer_idx
cache_has_contents = past_key_value.get_seq_length(kv_layer_idx) > 0
if (
getattr(self.config, "sliding_window", None) is not None
# and kv_seq_len > (self.config.sliding_window + self.config.num_memory_tokens if self.config.num_memory_tokens > 0 else self.config.sliding_window)
and kv_seq_len > self.config.sliding_window
and cache_has_contents
and use_swa
):
slicing_tokens = 1 - self.config.sliding_window
past_key = past_key_value[kv_layer_idx][0]
past_value = past_key_value[kv_layer_idx][1]
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
past_key_value.key_cache[kv_layer_idx] = past_key
past_key_value.value_cache[kv_layer_idx] = past_value
if attention_mask is not None:
attention_mask = attention_mask[:, slicing_tokens:]
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
swa_processed_flag = True
key_states, value_states = past_key_value.update(key_states, value_states, kv_layer_idx)
# repeat k/v heads if n_kv_heads < n_heads
key_states_no_repeat = key_states
value_states_no_repeat = value_states
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
dropout_rate = 0.0 if not self.training else self.attention_dropout
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
# Reashape to the expected shape for Flash Attention
query_states = query_states.transpose(1, 2) # (batch, slen, num_heads, head_dim)
key_states = key_states.transpose(1, 2) # (batch, slen, num_heads, head_dim)
value_states = value_states.transpose(1, 2) # (batch, slen, num_heads, head_dim)
attn_output = self._flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
use_sliding_windows=use_sliding_windows and not swa_processed_flag,
)
v_dim = value_states.shape[-2] * value_states.shape[-1]
attn_output = attn_output.reshape(-1, q_len, v_dim).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value, (key_states_no_repeat, value_states_no_repeat)
def _flash_attention_forward(
self,
query_states,
key_states,
value_states,
attention_mask,
query_length,
dropout=0.0,
softmax_scale=None,
use_sliding_windows=False,
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`int`, *optional*):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
use_sliding_windows (`bool`, *optional*):
Whether to activate sliding window attention.
"""
if not self._flash_attn_uses_top_left_mask:
causal = self.is_causal
else:
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
causal = self.is_causal and query_length != 1
if attention_mask is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
if not use_sliding_windows:
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
else:
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
window_size=(self.config.sliding_window, self.config.sliding_window),
)
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
else:
if not use_sliding_windows:
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
dropout,
softmax_scale=softmax_scale,
causal=causal,
)
else:
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
dropout,
softmax_scale=softmax_scale,
causal=causal,
window_size=(self.config.sliding_window, self.config.sliding_window),
)
return attn_output
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
# On the first iteration we need to properly re-create the padding mask
# by slicing it on the proper place
if kv_seq_len != attention_mask.shape[-1]:
attention_mask_num_tokens = attention_mask.shape[-1]
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
if not self.training and not type(key_layer) == torch.Tensor: ## this is for handling Mamba2 with output type <class 'mamba_ssm.ops.triton.layernorm_gated.tTensor'>
key_layer = torch.tensor(key_layer.clone())
value_layer = torch.tensor(value_layer.clone())
query_layer = torch.tensor(query_layer.clone())
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
class FastSLMSDPAAttention(nn.Module):
def __init__(self, config, layer_idx: int, reuse_kv=False):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=False
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=False
)
self.sliding_window = self.config.sliding_window if self.layer_idx not in self.config.global_attn_idx else None
def forward(
self,
hidden_states: torch.Tensor,
# position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
**kwargs,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
# cos, sin = position_embeddings
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx) # , cache_kwargs)
attention_interface = ALL_ATTENTION_FUNCTIONS['flash_attention_2']
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=self.sliding_window, # diff with Llama
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights, past_key_value, (key_states, value_states)
class FastSLMFused_MHA(FastSLMAttention):
"""
FastSLM flash attention module. This module inherits from `FastSLMAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.fused_mha_interface = fused_mha_interface
# self.init_kv_cache(max_batch_size=1, max_seq_len=8000)
def init_kv_cache(self, max_batch_size, max_seq_len, page_size=-1):
if hasattr(self, 'k_cache'):
del self.k_cache
del self.v_cache
if hasattr(self, 'page_table') and self.page_table is not None:
del self.page_table
import gc
gc.collect()
torch.cuda.empty_cache()
if page_size is not None and page_size > 0:
batch_max_pages = (max_seq_len + page_size - 1) // page_size
cache_max_pages = (max_batch_size * max_seq_len + page_size - 1) // page_size
self.k_cache = torch.zeros(cache_max_pages, page_size, self.num_key_value_heads, self.kq_head_dim).to(self.q_proj.weight)
self.v_cache = torch.zeros(cache_max_pages, page_size, self.num_key_value_heads, self.v_head_dim).to(self.q_proj.weight)
self.page_table = torch.zeros(max_batch_size, batch_max_pages, device=self.q_proj.weight.device, dtype=torch.int32)
else:
self.k_cache = torch.zeros(max_batch_size, max_seq_len, self.num_key_value_heads, self.kq_head_dim).to(self.q_proj.weight)
self.v_cache = torch.zeros(max_batch_size, max_seq_len, self.num_key_value_heads, self.v_head_dim).to(self.q_proj.weight)
self.page_table = None
self.max_seq_len = max_seq_len
def reset_kv_cache(self):
self.k_cache = self.k_cache.zero_()
self.v_cache = self.v_cache.zero_()
if self.page_table is not None:
self.page_table = self.page_table.zero_()
def forward(
self,
hidden_states: torch.Tensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
use_swa=False,
query_states = None,
key_states=None,
value_states=None,
**kwargs,
):
# print(f"Flash Attn - layer_idx: {self.layer_idx}, attn_mask is none: {attention_mask is None}")
# print(f"layer_idx: {self.layer_idx}, use_swq: {use_swa}")
if not hasattr(self, 'k_cache'):
self.init_kv_cache(max_batch_size=1, max_seq_len=8000)
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
attention_mask = kwargs.pop("padding_mask")
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.kq_head_dim).transpose(1, 2).contiguous()
if self.q_norm is not None:
query_states = self.q_norm(query_states)
# we do kq_norm first before rope according to
# https://github.com/huggingface/transformers/blob/6c1d0b069de22d7ed8aa83f733c25045eea0585d/src/transformers/models/cohere/modeling_cohere.py#L568
if self.config.rope:
cos, sin = self.rotary_emb(hidden_states, position_ids)
query_states, _ = apply_rotary_pos_emb(query_states, None, cos, sin)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.kq_head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.v_head_dim).transpose(1, 2)
if self.k_norm is not None:
key_states = self.k_norm(key_states)
if self.config.rope:
# cos, sin = self.rotary_emb(hidden_states, position_ids)
_, key_states = apply_rotary_pos_emb(None, key_states, cos, sin)
key_states_no_repeat = key_states
value_states_no_repeat = value_states
# Reashape to the expected shape for Flash Attention
query_states = query_states.transpose(1, 2) # (batch, slen, num_heads, head_dim)
key_states = key_states.transpose(1, 2) # (batch, slen, num_kv_heads, head_dim)
value_states = value_states.transpose(1, 2) # (batch, slen, num_kv_heads, head_dim)
if self.k_cache.device != query_states.device:
self.k_cache = self.k_cache.to(query_states)
self.v_cache = self.v_cache.to(query_states)
attn_output = self.fused_mha_interface(
query_states,
key_states,
value_states,
k_cache=self.k_cache,
v_cache=self.v_cache,
page_table=self.page_table,
max_seq_len=self.max_seq_len,
position_ids=position_ids,
)
v_dim = query_states.shape[-2] * value_states.shape[-1]
attn_output = attn_output.reshape(bsz, q_len, v_dim).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value, (key_states_no_repeat, value_states_no_repeat)
JAMBA_ATTENTION_CLASSES = {
"flash_attention_2": FastSLMFlashAttention2,
"fused_mha": FastSLMFused_MHA,
"sdpa": FastSLMSDPAAttention,
}
class FastSLMMLP(nn.Module):
def __init__(self, config: FastSLMConfig, layer_idx: int):
super().__init__()
self.config = config
self.act_fn_name = config.mlp_hidden_act
self.act_fn = ACT2FN[self.act_fn_name]
if config.ffn_expand_ratio is not None:
self.ffn_dim = int(config.ffn_expand_ratio * config.hidden_size) // 128 * 128
else:
self.ffn_dim = config.intermediate_size
self.hidden_dim = config.hidden_size
self.layer_idx = layer_idx
if self.act_fn_name == "silu":
self.gate_proj = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
self.down_proj = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
self.up_proj = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
def forward(self, x):
if self.act_fn_name == "silu":
output = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
elif self.act_fn_name == "relu2":
output = self.down_proj(self.act_fn(self.up_proj(x)))
else:
raise NotImplementedError(f"No such hidden_act: {self.act_fn_name}")
return output
# Adapted from transformers.models.mixtral.modeling_mixtral.MixtralSparseMoeBlock with Mistral->FastSLM
class FastSLMSparseMoeBlock(nn.Module):
"""
This implementation is
strictly equivalent to standard MoE with full capacity (no
dropped tokens). It's faster since it formulates MoE operations
in terms of block-sparse operations to accomodate imbalanced
assignments of tokens to experts, whereas standard MoE either
(1) drop tokens at the cost of reduced performance or (2) set
capacity factor to number of experts and thus waste computation
and memory on padding.
"""
def __init__(self, config: FastSLMConfig, num_experts: int, num_experts_per_tok: int, layer_idx: int):
super().__init__()
self.hidden_dim = config.hidden_size
self.ffn_dim = config.intermediate_size
self.layer_idx = layer_idx
# these values are decided on runtime depending on the layer index
self.num_experts = num_experts
self.top_k = num_experts_per_tok
if num_experts > 1:
# expert routing
self.router = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
else:
self.router = None
self.experts = nn.ModuleList([FastSLMMLP(config, layer_idx=layer_idx) for _ in range(self.num_experts)])
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
""" """
if len(hidden_states.shape) == 3:
batch_size, sequence_length, hidden_dim = hidden_states.shape
bs_times_seq_len = batch_size * sequence_length
elif len(hidden_states.shape) == 2:
assert self.num_experts == 1
bs_times_seq_len, hidden_dim = hidden_states.shape
else:
batch_size, sequence_length, _, hidden_dim = hidden_states.shape
bs_times_seq_len = batch_size * sequence_length
if self.num_experts == 1:
# in this case we have a single MLP block and don't need to do any routing
final_hidden_states = self.experts[0](hidden_states)
router_logits = torch.ones(
(bs_times_seq_len, 1),
device=hidden_states.device,
dtype=hidden_states.dtype,
requires_grad=hidden_states.requires_grad,
)
return final_hidden_states, router_logits
# in this case we have multiple experts and need to do routing
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.router(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
if top_x.shape[0] == 0:
continue
# in torch it is faster to index using lists than torch tensors
top_x_list = top_x.tolist()
idx_list = idx.tolist()
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
class FastSLMAttentionDecoderLayer(nn.Module):
def __init__(self, config: FastSLMConfig, num_experts: int, layer_idx: int,):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.self_attn = JAMBA_ATTENTION_CLASSES[config.attn_implementation](config, layer_idx)
if self.config.intermediate_size > 0:
num_experts_per_tok = config.num_experts_per_tok if num_experts > 1 else 1
self.moe = FastSLMSparseMoeBlock(config, num_experts=num_experts, num_experts_per_tok=num_experts_per_tok, layer_idx=layer_idx)
else:
self.moe = None
self.input_layernorm = FastSLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.pre_moe_layernorm = FastSLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
use_swa=False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
"""
if position_ids is not None and position_ids.shape[1] != hidden_states.shape[1]:
position_ids = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
residual = hidden_states
if self.input_layernorm is not None:
hidden_states = self.input_layernorm(hidden_states)
hidden_states, self_attn_weights, present_key_value, current_kv = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
use_swa=use_swa,
)
hidden_states = residual + hidden_states
if self.moe is not None:
residual = hidden_states
if self.pre_moe_layernorm is not None:
hidden_states = self.pre_moe_layernorm(hidden_states)
hidden_states, router_logits = self.moe(hidden_states)
hidden_states = residual + hidden_states
else:
router_logits = None
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
if output_router_logits:
outputs += (router_logits,)
outputs += (current_kv,)
return outputs
class FFNDecoderLayer(nn.Module):
def __init__(self, config: FastSLMConfig, num_experts: int, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
num_experts_per_tok = config.num_experts_per_tok if num_experts > 1 else 1
self.moe = FastSLMSparseMoeBlock(config, num_experts=num_experts, num_experts_per_tok=num_experts_per_tok, layer_idx=layer_idx)
self.pre_moe_layernorm = FastSLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
use_swa=False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
"""
residual = hidden_states
if self.pre_moe_layernorm is not None:
hidden_states = self.pre_moe_layernorm(hidden_states)
hidden_states, router_logits = self.moe(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (None,)
if use_cache:
outputs += (None,)
if output_router_logits:
outputs += (router_logits,)
return outputs
class FastSLMMambaDecoderLayer(nn.Module):
def __init__(self, config: FastSLMConfig, num_experts: int, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.mamba = Mamba2(config=config, layer_idx=layer_idx)
self.intermediate_size = config.intermediate_size
if self.intermediate_size > 0:
num_experts_per_tok = config.num_experts_per_tok if num_experts > 1 else 1
self.moe = FastSLMSparseMoeBlock(config, num_experts=num_experts, num_experts_per_tok=num_experts_per_tok, layer_idx=layer_idx)
self.input_layernorm = FastSLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
if self.intermediate_size > 0:
self.pre_moe_layernorm = FastSLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.pre_moe_layernorm = None
self.meta_added_flag = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
use_swa=False,
mamba_inference_params=None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
"""
if position_ids is not None and position_ids.shape[1] != hidden_states.shape[1]:
position_ids = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
residual = hidden_states
if self.input_layernorm is not None:
hidden_states = self.input_layernorm(hidden_states)
hidden_states, present_key_value = self.mamba(
hidden_states=hidden_states,
past_key_value=past_key_value,
attention_mask=attention_mask,
inference_params=mamba_inference_params,
)
attn_key_value = None
hidden_states = residual + hidden_states
if self.intermediate_size > 0:
residual = hidden_states
if self.pre_moe_layernorm is not None:
hidden_states = self.pre_moe_layernorm(hidden_states)
hidden_states, router_logits = self.moe(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if use_cache:
outputs += (present_key_value,)
if output_router_logits:
outputs += (router_logits,)
outputs += (attn_key_value,)
return outputs
def _get_past_seqlen(self, past_key_value, seqlen):
if past_key_value is None:
return seqlen
past_seqlen = past_key_value.get_seq_length(self.layer_idx)
if past_seqlen == 0:
return seqlen
return past_seqlen
class FastSLMHybridDecoderLayer(nn.Module):
def __init__(self, config: FastSLMConfig, num_experts: int, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if config.hybrid_decoder_layer == 'mamba':
self.mamba = Mamba2(config=config, layer_idx=layer_idx)
if config.hybrid_decoder_layer == 'deltanet':
## this is to properly handle cache index
if config.layer_types is not None:
deltanet_idx = sum(1 for i in range(layer_idx) if config.layer_types[i] == 'deltanet')
else:
deltanet_idx = layer_idx
self.gla = DeltaNet(hidden_size=config.hidden_size, num_heads=config.num_attention_heads, layer_idx=deltanet_idx, config=self.config)
else:
raise ValueError(f"Not supported: {config.hybrid_decoder_layer}")
self.config = config
if self.config.intermediate_size > 0:
num_experts_per_tok = config.num_experts_per_tok if num_experts > 1 else 1
self.moe = FastSLMSparseMoeBlock(config, num_experts=num_experts, num_experts_per_tok=num_experts_per_tok, layer_idx=layer_idx)
self.pre_moe_layernorm = FastSLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.moe = None
self.pre_moe_layernorm = None
self.input_layernorm = FastSLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
fla_past_key_values = None,
mamba_inference_params = None,
use_swa=False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
if self.config.hybrid_decoder_layer == 'mamba':
hybrid_op_hidden_states, mamba_present_key_value = self.mamba(
hidden_states=hidden_states,
past_key_value=past_key_value,
attention_mask=attention_mask,
inference_params=mamba_inference_params,
)
else:
hybrid_op_hidden_states, _, fla_past_key_values = self.gla(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=fla_past_key_values,
use_cache=use_cache,
)
self_attn_weights = self_attn_present_key_value = current_kv = None
hidden_states = residual + hybrid_op_hidden_states
if self.moe is not None:
residual = hidden_states
hidden_states = self.pre_moe_layernorm(hidden_states)
hidden_states, router_logits = self.moe(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (self_attn_present_key_value,)
if output_router_logits:
outputs += (router_logits,)
outputs += (current_kv,)
return outputs
# Adapted from transformers.models.mistral.modeling_mistral.MistralPreTrainedModel with Mistral->FastSLM
class FastSLMPreTrainedModel(PreTrainedModel):
config_class = FastSLMConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["FastSLMAttentionDecoderLayer", "FastSLMMambaDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@staticmethod
def _convert_to_standard_cache(
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
"""
Standardizes the format of the cache so as to match most implementations, i.e. have the seqlen as the third dim
also for mamba layers
"""
attn_layer_index = [k.shape == v.shape for k, v in past_key_value].index(True)
seqlen = past_key_value[attn_layer_index][0].shape[2]
standard_past_key_value = ()
for k, v in past_key_value:
if k.shape != v.shape:
# mamba layer
# expand doesn't use more memory, so it's fine to do it here
standard_past_key_value += ((k.expand(-1, -1, seqlen, -1), v.expand(-1, -1, seqlen, -1)),)
else:
standard_past_key_value += ((k, v),)
return standard_past_key_value
@staticmethod
def _convert_to_jamba_cache(
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]],
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
"""
Converts the cache to the format expected by FastSLM, i.e. dummy seqlen dimesion with size 1 for mamba layers
"""
jamba_past_key_value = ()
for k, v in past_key_value:
if k.shape != v.shape:
# mamba layer
jamba_past_key_value += ((k[:, :, :1, :], v[:, :, :1, :]),)
else:
jamba_past_key_value += ((k, v),)
return jamba_past_key_value
# Adapted from transformers.models.mistral.modeling_mistral.MistralModel with MISTRAL->JAMBA, Mistral->FastSLM
class FastSLMModel(FastSLMPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`FastSLMDecoderLayer`]
Args:
config: FastSLMConfig
"""
def __init__(self, config: FastSLMConfig):
super().__init__(config)
config.attn_implementation = config.attn_implementation_new
config._attn_implementation = config.attn_implementation_new
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
decoder_layers = []
layer_type = []
for i in range(config.num_hidden_layers):
num_experts = 1
if config.layer_types[i] in ['deltanet']:
layer_type.append('m')
config_new = copy.deepcopy(config)
config_new.hybrid_decoder_layer = 'deltanet'
decoder_layer = FastSLMHybridDecoderLayer(config_new, num_experts=num_experts, layer_idx=i)
elif config.layer_types[i] in ['m', 'm2']:
layer_type.append('m')
decoder_layer = FastSLMMambaDecoderLayer(config, num_experts=num_experts, layer_idx=i)
elif config.layer_types[i] == 'a':
layer_type.append('a')
decoder_layer = FastSLMAttentionDecoderLayer(config, num_experts=num_experts, layer_idx=i)
elif config.layer_types[i] == 'f':
layer_type.append('a')
decoder_layer = FFNDecoderLayer(config, num_experts=num_experts, layer_idx=i)
else:
raise ValueError(f"Unsupported layer type {config.layer_types[i]}")
decoder_layers.append(decoder_layer)
config.layer_type = layer_type
if config.sliding_window is not None:
self.sliding_window = config.sliding_window
self.global_attn_idx = config.global_attn_idx
else:
self.sliding_window = None
self.global_attn_idx = None
if not any(isinstance(layer, FastSLMAttentionDecoderLayer) for layer in decoder_layers):
# raise ValueError("At least one layer in the decoder must be an attention layer")
self._attn_layer_index = []
else:
self._attn_layer_index = [isinstance(layer, FastSLMAttentionDecoderLayer) for layer in decoder_layers].index(
True
)
if not any(isinstance(layer, FastSLMMambaDecoderLayer) for layer in decoder_layers):
# raise ValueError("At least one layer in the decoder must be a Mamba layer")
self._mamba_layer_index = []
else:
self._mamba_layer_index = [isinstance(layer, FastSLMMambaDecoderLayer) for layer in decoder_layers].index(True)
# if (
# decoder_layers[self._mamba_layer_index].mamba.ssm_state_size
# == decoder_layers[self._mamba_layer_index].mamba.conv_kernel_size
# ):
# raise ValueError("Mamba state size and convolution size must be different")
self.layers = nn.ModuleList(decoder_layers)
self._attn_implementation = config.attn_implementation
self.final_layernorm = FastSLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
if self.config.num_memory_tokens > 0:
self.memory_tokens = nn.Parameter(torch.randn(self.config.num_memory_tokens, self.config.hidden_size))
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
self.has_previous_state = False
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[List[torch.FloatTensor], HybridMambaAttentionDynamicCache]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
fla_past_key_values = None,
mamba_inference_params = None,
) -> Union[Tuple, MoeModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(0, seq_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
if self.config.num_memory_tokens > 0 and past_key_values is not None and not self.has_previous_state:
position_ids = position_ids.view(-1, seq_length + self.config.num_memory_tokens).long()
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
ori_b, ori_n = inputs_embeds.shape[0], inputs_embeds.shape[1]
if self.config.num_memory_tokens > 0 and (past_key_values is None or not self.has_previous_state):
mem = repeat(self.memory_tokens, 'n d -> b n d', b = inputs_embeds.shape[0]) # prepend the memory to every segment of m by repeating the memory tokens
inputs_embeds, mem_packed_shape = pack((mem, inputs_embeds), 'b * d')
if position_ids is not None and position_ids.shape[1] != inputs_embeds.shape[1]:
position_ids = torch.arange(inputs_embeds.shape[1], device=inputs_embeds.device).unsqueeze(0)
if attention_mask is not None and attention_mask.shape[1] < inputs_embeds.shape[1]:
assert attention_mask.shape[1] + self.config.num_memory_tokens == inputs_embeds.shape[1]
attention_mask = torch.cat([torch.ones(inputs_embeds.shape[0], self.config.num_memory_tokens, device=attention_mask.device), attention_mask], dim=1)
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of FastSLM. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_router_logits = () if output_router_logits else None
next_decoder_cache = None
for i, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
output_router_logits,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
use_swa=self.sliding_window is not None and i not in self.global_attn_idx,
fla_past_key_values=fla_past_key_values,
mamba_inference_params=mamba_inference_params,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if output_router_logits:
all_router_logits += (layer_outputs[3],)
if self.final_layernorm is not None:
hidden_states = self.final_layernorm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.config.num_memory_tokens > 0 and (past_key_values is None or not self.has_previous_state):
mem, hidden_states = unpack(hidden_states, mem_packed_shape, 'b * d')
hidden_states = hidden_states[:, :ori_n, :]
if past_key_values is not None and not self.has_previous_state:
self.has_previous_state = True
next_cache = None
if use_cache:
next_cache = next_decoder_cache
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
if v is not None
)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if (fla_past_key_values is None and mamba_inference_params is None) else (past_key_values, fla_past_key_values, mamba_inference_params),
hidden_states=all_hidden_states,
attentions=all_self_attns,
router_logits=all_router_logits,
)
# Adapted from transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM with MIXTRAL->JAMBA, Mixtral->FastSLM
class FastSLMForCausalLM(FastSLMPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: FastSLMConfig):
super().__init__(config)
self.config = config
self.model = FastSLMModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.router_aux_loss_coef = config.router_aux_loss_coef
self.num_experts = config.num_experts
self.num_experts_per_tok = config.num_experts_per_tok
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
# Ignore copy
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
calc_logits_for_entire_prompt: Optional[bool] = True,
fla_past_key_values = None,
mamba_inference_params = None,
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
calc_logits_for_entire_prompt (`bool`, *optional*):
Whether or not to calculate the logits for the entire prompt, or just the last token. Only last token
logits are needed for generation, and calculating them only for that token can save memory,
which becomes pretty significant for long sequences.
Returns:
```"""
# print(input_ids.max())
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
fla_past_key_values=fla_past_key_values,
mamba_inference_params=mamba_inference_params,
return_dict=return_dict,
)
hidden_states = outputs[0]
if calc_logits_for_entire_prompt:
logits = self.lm_head(hidden_states)
else:
logits = self.lm_head(hidden_states[..., -1:, :])
logits = logits / self.lm_head.weight.norm(p=2, dim=1)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
# print("hidden_states.shape:", hidden_states.shape, "input_ids.shape:", input_ids.shape, "logits.shape:", logits.shape)
return MoeCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits,
)
def get_init_cache(self, max_seqlen, batch_size=1):
past_key_values = HybridMambaAttentionDynamicCache(
self.config, batch_size, self.dtype, device=self.device, layer_type=self.config.layer_type
)
mamba_inference_params = InferenceParams(max_seqlen=max_seqlen, max_batch_size=batch_size)
fla_past_key_values = fla_cache.from_legacy_cache(None)
return past_key_values, fla_past_key_values, mamba_inference_params
def init_cuda_graph_generation(
self,
max_new_tokens=128,
batch_size=1,
device=None,
):
"""
Initialize CUDA graph for generation with proper cache handling and warmup.
This function should be called once before generation to set up the graph.
Args:
max_new_tokens: Maximum number of new tokens to generate
batch_size: Batch size for generation
device: Device to use (defaults to model device)
Returns:
generation_state: Dictionary containing all necessary state for generation
"""
if device is None:
device = next(self.parameters()).device
self.eval()
# Initialize caches
max_seqlen = max_new_tokens + 2048 + self.config.num_memory_tokens # Add buffer for input
past_key_values, fla_past_key_values, mamba_inference_params = self.get_init_cache(
max_seqlen=max_seqlen, batch_size=batch_size
)
# Initialize KV caches for all modules
for module in self.modules():
if hasattr(module, 'init_kv_cache'):
module.init_kv_cache(max_batch_size=batch_size, max_seq_len=max_seqlen)
with torch.no_grad():
# Warmup runs
dummy_input = torch.ones((batch_size, 10), dtype=torch.long, device=device)
for _ in range(10):
self(dummy_input)
# Prepare static tensors for CUDA graph
static_current_input = torch.zeros((batch_size, 1), dtype=torch.long, device=device)
static_position_ids = torch.zeros((batch_size, 1), dtype=torch.long, device=device)
static_logits = torch.zeros((batch_size, self.config.vocab_size), device=device)
# Set up for graph capture
self.model.has_previous_state = True
if mamba_inference_params is not None:
mamba_inference_params.seqlen_offset = 1
# Warmup runs for graph capture
for _ in range(10):
model_kwargs_warmup = {
'input_ids': static_current_input,
'fla_past_key_values': fla_past_key_values,
'mamba_inference_params': mamba_inference_params,
'past_key_values': past_key_values,
'use_cache': True,
'position_ids': static_position_ids,
}
warmup_outputs = self(**model_kwargs_warmup)
# Capture CUDA graph
generation_graph = CUDAGraph()
with torch.cuda.graph(generation_graph):
model_kwargs_graph = {
'input_ids': static_current_input,
'fla_past_key_values': fla_past_key_values,
'mamba_inference_params': mamba_inference_params,
'past_key_values': past_key_values,
'use_cache': True,
'position_ids': static_position_ids,
}
graph_outputs = self(**model_kwargs_graph)
static_logits.copy_(graph_outputs.logits[:, -1, :])
if fla_past_key_values is not None:
fla_past_key_values.reset()
if mamba_inference_params is not None:
mamba_inference_params.reset(mamba_inference_params.max_seqlen, mamba_inference_params.max_batch_size)
for key in mamba_inference_params.key_value_memory_dict:
conv_state, ssm_state = mamba_inference_params.key_value_memory_dict[key]
conv_state.zero_()
ssm_state.zero_()
for module in self.modules():
if hasattr(module, 'reset_kv_cache'):
module.reset_kv_cache()
self.model.has_previous_state = False
# Return generation state
generation_state = {
'generation_graph': generation_graph,
'static_current_input': static_current_input,
'static_position_ids': static_position_ids,
'static_logits': static_logits,
'past_key_values': past_key_values,
'fla_past_key_values': fla_past_key_values,
'mamba_inference_params': mamba_inference_params,
'max_seqlen': max_seqlen,
'batch_size': batch_size,
'device': device,
}
return generation_state
def generate_with_cuda_graph(
self,
input_ids,
generation_state,
max_new_tokens=128,
temperature=1.0,
top_k=0,
top_p=0.9,
eos_token_id=None,
verbose=False,
profiling=False,
multi_round=False,
):
"""
Generate text using pre-initialized CUDA graph state.
Args:
input_ids: Input token IDs tensor of shape (batch_size, seq_len)
generation_state: State dictionary returned by init_cuda_graph_generation
max_new_tokens: Maximum number of new tokens to generate
temperature: Sampling temperature (0 for greedy)
top_k: Top-k filtering (0 to disable)
top_p: Top-p filtering (1.0 to disable)
eos_token_id: End-of-sequence token ID
pad_token_id: Padding token ID
verbose: Whether to print generated tokens
profiling: Whether to return timing information
Returns:
generated_ids: Tensor of shape (batch_size, input_len + generated_len)
or decode_latency if profiling=True
"""
self.eval()
batch_size = input_ids.shape[0]
device = input_ids.device
# Extract state
generation_graph = generation_state['generation_graph']
static_current_input = generation_state['static_current_input']
static_position_ids = generation_state['static_position_ids']
static_logits = generation_state['static_logits']
past_key_values = generation_state['past_key_values']
fla_past_key_values = generation_state['fla_past_key_values']
mamba_inference_params = generation_state['mamba_inference_params']
with torch.no_grad():
if not multi_round or mamba_inference_params.seqlen_offset == 0:
if fla_past_key_values is not None:
fla_past_key_values.reset()
if mamba_inference_params is not None:
mamba_inference_params.reset(mamba_inference_params.max_seqlen, mamba_inference_params.max_batch_size)
for key in mamba_inference_params.key_value_memory_dict:
conv_state, ssm_state = mamba_inference_params.key_value_memory_dict[key]
conv_state.zero_()
ssm_state.zero_()
for module in self.modules():
if hasattr(module, 'reset_kv_cache'):
module.reset_kv_cache()
self.model.has_previous_state = False
# Prefill phase - process input sequence
position_ids = torch.arange(
self.config.num_memory_tokens + input_ids.shape[1], dtype=torch.long, device=device
).unsqueeze(0).expand(batch_size, -1)
else:
# Prefill phase - process input sequence
position_ids = torch.arange(
mamba_inference_params.seqlen_offset, mamba_inference_params.seqlen_offset + input_ids.shape[1], dtype=torch.long, device=device
).unsqueeze(0).expand(batch_size, -1)
current_input = input_ids
model_kwargs = {
'input_ids': current_input,
'past_key_values': past_key_values,
'fla_past_key_values': fla_past_key_values,
'mamba_inference_params': mamba_inference_params,
'use_cache': True,
'position_ids': position_ids,
}
if profiling:
torch.cuda.synchronize()
t1 = time.time()
# Forward pass for prefill
outputs = self(**model_kwargs)
if mamba_inference_params is not None:
if mamba_inference_params.seqlen_offset == 0:
mamba_inference_params.seqlen_offset = current_input.shape[1] + self.config.num_memory_tokens
else:
mamba_inference_params.seqlen_offset += current_input.shape[1]
static_position_ids.fill_(position_ids[0, -1])
logits = outputs.logits[:, -1, :] # (batch_size, vocab_size)
generated_tokens = []
# Generation loop using CUDA graph replay
for step in range(max_new_tokens):
# Sample next token using current logits
if temperature == 0:
next_token = torch.argmax(logits, dim=-1, keepdim=True)
else:
next_token = sample_token(logits, temperature=temperature, top_k=top_k, top_p=top_p)
generated_tokens.append(next_token)
# Check for EOS
if not profiling and eos_token_id is not None and (next_token == eos_token_id).all():
if verbose:
print("\nEOS reached")
break
# Update static tensors for graph replay
static_current_input.copy_(next_token)
static_position_ids.add_(1)
# Replay the captured graph
generation_graph.replay()
if mamba_inference_params is not None:
mamba_inference_params.seqlen_offset += 1
logits = static_logits.clone()
generated_ids = torch.cat([input_ids] + generated_tokens, dim=1)
if profiling:
torch.cuda.synchronize()
t2 = time.time()
decode_latency = t2 - t1
return generated_ids, decode_latency
return generated_ids
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
output_router_logits=False,
**kwargs,
):
if self.config.num_memory_tokens > 0:
attention_mask = torch.cat([torch.ones(input_ids.shape[0], self.config.num_memory_tokens, device=attention_mask.device), attention_mask], dim=1)
past_key_values = None # Disable cache for now
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
position_ids = position_ids[:, -input_ids.shape[1]:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None:
if input_ids.shape[1] == 0:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
inputs_embeds_new = self.model.embed_tokens(input_ids)
model_inputs = {"inputs_embeds": torch.cat([inputs_embeds, inputs_embeds_new], dim=1)}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
def sample_token(logits, temperature=1.0, top_k=0, top_p=0.9):
"""
Sample a token from logits with temperature, top-k, and top-p filtering.
This matches the implementation in fast_slm_gen.py for consistency.
Args:
logits: Tensor of shape (batch_size, vocab_size)
temperature: Sampling temperature
top_k: Top-k filtering (0 to disable)
top_p: Top-p filtering (1.0 to disable)
Returns:
next_token: Tensor of shape (batch_size, 1)
"""
if temperature == 0:
return torch.argmax(logits, dim=-1, keepdim=True)
logits = logits / temperature
# Top-k filtering - match fast_slm_gen.py implementation
if top_k > 0:
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits.masked_fill_(indices_to_remove, float('-inf'))
# Top-p filtering - match fast_slm_gen.py implementation
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices_to_remove.scatter(-1, sorted_indices, sorted_indices_to_remove)
logits.masked_fill_(indices_to_remove, float('-inf'))
probs = F.softmax(logits, dim=-1)
return torch.multinomial(probs, num_samples=1)