# -------------------------------------------------------- # Adapted from https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B under MIT License # LICENSE is in incl_licenses directory. # -------------------------------------------------------- from transformers import AutoConfig, LlamaConfig from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging from transformers.dynamic_module_utils import get_class_from_dynamic_module logger = logging.get_logger(__name__) class Llama_Nemotron_Nano_VL_Config(PretrainedConfig): model_type = 'Llama_Nemotron_Nano_VL' is_composition = True def __init__( self, vision_config=None, llm_config=None, force_image_size=None, downsample_ratio=0.5, template=None, ps_version='v1', image_tag_type="internvl", projector_hidden_size=4096, vit_hidden_size=1280, attn_implementation="flash_attention_2", **kwargs ): super().__init__(**kwargs) if vision_config is not None: assert "auto_map" in vision_config and "AutoConfig" in vision_config["auto_map"] vision_auto_config = get_class_from_dynamic_module(*vision_config["auto_map"]["AutoConfig"].split("--")[::-1]) self.vision_config = vision_auto_config(**vision_config) else: self.vision_config = PretrainedConfig() if llm_config is None: self.llm_config = LlamaConfig() else: self.llm_config = LlamaConfig(**llm_config) # Assign configuration values self.force_image_size = force_image_size self.downsample_ratio = downsample_ratio self.template = template # TODO move out of here and into the tokenizer self.ps_version = ps_version # Pixel shuffle version self.image_tag_type = image_tag_type # TODO: into the tokenizer too? self.projector_hidden_size = projector_hidden_size self.vit_hidden_size = vit_hidden_size self._attn_implementation = attn_implementation self.vision_config.use_flash_attn = "flash_attention" in self._attn_implementation self.llm_config._attn_implementation = self._attn_implementation