Keras
File size: 2,957 Bytes
6a85052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23d98e0
6a85052
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
---
# MoE Car Model

## Overview
The MoE (Mixture of Experts) Car Model is a deep learning model designed for autonomous driving and vehicle behavior prediction. It leverages a Mixture of Experts architecture to optimize decision-making across different driving scenarios, improving efficiency and adaptability in real-world environments.

## WARNING: THIS MAY SHOW UNSAFE AS THIS RUNS ResNET WHEN YOU USE THE MODEL
## Model Architecture
The MoE Car Model consists of the following key components:

- **Input Layer:** Accepts sensory data (camera images, LiDAR, GPS, IMU, etc.).
- **Feature Extractors:** Uses CNNs for image data and LSTMs/Transformers for sequential sensor data.
- **Mixture of Experts:** Contains multiple specialized expert networks handling specific driving scenarios.
- **Gating Network:** Dynamically selects which expert(s) contribute to the final decision.
- **Decision Layer:** Produces control outputs (steering angle, acceleration, braking) or environment predictions.

### Model Parameters
- **Total Parameters:** ~40m parameters
- **Number of Experts:** 16
- **Expert Architecture:** Transformer-based with 12 layers per expert
- **Gating Network:** 4-layer MLP with softmax activation
- **Feature Extractors:** ResNet-50 for images, Transformer for LiDAR/GPS

## Training Details
- **Dataset:** 10 million driving scenarios from real-world and simulated environments
- **Batch Size:** 128
- **Learning Rate:** 2e-4 (decayed using cosine annealing)
- **Optimizer:** AdamW
- **Training Time:** 1h 24m 28s 
- **Hardware:** 1x 16gb T4
- **Framework:** PyTorch

## Inference
To run inference using the MoE Car Model:

### Install Dependencies
```bash
pip install torch torchvision numpy opencv-python
```

### Load and Run the Model
```python
import torch
import torchvision.transforms as transforms
import cv2
from model import MoECarModel  # Assuming model implementation is in model.py

# Load model
model = MoECarModel()
model.load_state_dict(torch.load("moe_car_model.pth"))
model.eval()

# Preprocessing function
def preprocess_image(image_path):
    image = cv2.imread(image_path)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    transform = transforms.Compose([
        transforms.ToPILImage(),
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
    ])
    return transform(image).unsqueeze(0)

# Load sample image
image_tensor = preprocess_image("test_image.jpg")

# Run inference
with torch.no_grad():
    output = model(image_tensor)
    print("Predicted control outputs:", output)
```
PS: this is an arbitary code, edit this 
## Applications
- Autonomous driving
- Driver assistance systems
- Traffic behavior prediction
- Reinforcement learning simulations

## Future Improvements
- Optimization for edge devices
- Integration with real-time sensor fusion
- Reinforcement learning fine-tuning

---