nii-yamagishilab commited on
Commit
96b086b
·
verified ·
1 Parent(s): 9c88ec0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -195,12 +195,12 @@ Results shown below can be reproduced using scripts provided in our [GitHub repo
195
 
196
  | Test Database | ROC AUC | Accuracy | Precision | Recall | F1-score | FPR | FNR | EER (%) @ Threshold |
197
  |----------------------|---------|----------|-----------|--------|----------|-------|-------|----------------------|
198
- | ADD2023 | 0.752 | 0.591 | 0.867 | 0.528 | 0.656 | 0.230 | 0.472 | 35.34 @ 0.2385 |
199
- | DeepVoice | 0.932 | 0.753 | 0.322 | 0.915 | 0.477 | 0.270 | 0.085 | 14.87 @ 0.7576 |
200
- | FakeOrReal | 0.994 | 0.826 | 0.999 | 0.644 | 0.783 | 0.001 | 0.356 | 3.67 @ 0.0338 |
201
- | FakeOrReal-norm | 0.910 | 0.784 | 0.991 | 0.563 | 0.718 | 0.005 | 0.437 | 15.52 @ 0.0760 |
202
  | In-the-Wild | 0.919 | 0.733 | 0.969 | 0.594 | 0.737 | 0.032 | 0.406 | 17.99 @ 0.0841 |
203
- | Deepfake-Eval-2024 | 0.498 | 0.595 | 0.646 | 0.842 | 0.731 | 0.871 | 0.158 | 50.15 @ 0.5194 |
204
 
205
 
206
  You can also fine-tune this model on a specific database, the corresponding code is provided in our [GitHub repository](https://github.com/nii-yamagishilab/AntiDeepfake). Fine-tuning will follow a similar process to training a new model, except that model weights will be initialized as AntiDeepfake checkpoints.
@@ -243,7 +243,7 @@ Below is a breakdown of the training set used for post-training of speech SSL mo
243
  | LibriTTS-R | en | 0 | 583.15 |
244
  | LibriTTS-Vocoded | en | 0 | 2345.14 |
245
  | LJSpeech | en | 23.92 | 0 |
246
- | MLADD | 38 languages | 0 | 377.96 |
247
  | MLS | 8 languages | 50558.11 | 0 |
248
  | SpoofCeleb | Multilingual | 173.00 | 1916.20 |
249
  | VoiceMOS | en | 0 | 448.44 |
 
195
 
196
  | Test Database | ROC AUC | Accuracy | Precision | Recall | F1-score | FPR | FNR | EER (%) @ Threshold |
197
  |----------------------|---------|----------|-----------|--------|----------|-------|-------|----------------------|
198
+ | ADD2023 | 0.752 | 0.591 | 0.867 | 0.528 | 0.656 | 0.230 | 0.472 | 35.34 @ 0.2345 |
199
+ | DeepVoice | 0.932 | 0.753 | 0.322 | 0.915 | 0.477 | 0.270 | 0.085 | 14.84 @ 0.7575 |
200
+ | FakeOrReal | 0.994 | 0.826 | 0.999 | 0.644 | 0.783 | 0.001 | 0.356 | 3.67 @ 0.0336 |
201
+ | FakeOrReal-norm | 0.910 | 0.784 | 0.991 | 0.563 | 0.718 | 0.005 | 0.437 | 15.56 @ 0.0758 |
202
  | In-the-Wild | 0.919 | 0.733 | 0.969 | 0.594 | 0.737 | 0.032 | 0.406 | 17.99 @ 0.0841 |
203
+ | Deepfake-Eval-2024 | 0.507 | 0.560 | 0.623 | 0.744 | 0.678 | 0.743 | 0.257 | 50.99 @ 0.8029 |
204
 
205
 
206
  You can also fine-tune this model on a specific database, the corresponding code is provided in our [GitHub repository](https://github.com/nii-yamagishilab/AntiDeepfake). Fine-tuning will follow a similar process to training a new model, except that model weights will be initialized as AntiDeepfake checkpoints.
 
243
  | LibriTTS-R | en | 0 | 583.15 |
244
  | LibriTTS-Vocoded | en | 0 | 2345.14 |
245
  | LJSpeech | en | 23.92 | 0 |
246
+ | MLAAD | 38 languages | 0 | 377.96 |
247
  | MLS | 8 languages | 50558.11 | 0 |
248
  | SpoofCeleb | Multilingual | 173.00 | 1916.20 |
249
  | VoiceMOS | en | 0 | 448.44 |