Update README.md
Browse files
README.md
CHANGED
|
@@ -195,12 +195,12 @@ Results shown below can be reproduced using scripts provided in our [GitHub repo
|
|
| 195 |
|
| 196 |
| Test Database | ROC AUC | Accuracy | Precision | Recall | F1-score | FPR | FNR | EER (%) @ Threshold |
|
| 197 |
|----------------------|---------|----------|-----------|--------|----------|-------|-------|----------------------|
|
| 198 |
-
| ADD2023 | 0.752 | 0.591 | 0.867 | 0.528 | 0.656 | 0.230 | 0.472 | 35.34 @ 0.
|
| 199 |
-
| DeepVoice | 0.932 | 0.753 | 0.322 | 0.915 | 0.477 | 0.270 | 0.085 | 14.
|
| 200 |
-
| FakeOrReal | 0.994 | 0.826 | 0.999 | 0.644 | 0.783 | 0.001 | 0.356 | 3.67 @ 0.
|
| 201 |
-
| FakeOrReal-norm | 0.910 | 0.784 | 0.991 | 0.563 | 0.718 | 0.005 | 0.437 | 15.
|
| 202 |
| In-the-Wild | 0.919 | 0.733 | 0.969 | 0.594 | 0.737 | 0.032 | 0.406 | 17.99 @ 0.0841 |
|
| 203 |
-
| Deepfake-Eval-2024 | 0.
|
| 204 |
|
| 205 |
|
| 206 |
You can also fine-tune this model on a specific database, the corresponding code is provided in our [GitHub repository](https://github.com/nii-yamagishilab/AntiDeepfake). Fine-tuning will follow a similar process to training a new model, except that model weights will be initialized as AntiDeepfake checkpoints.
|
|
@@ -243,7 +243,7 @@ Below is a breakdown of the training set used for post-training of speech SSL mo
|
|
| 243 |
| LibriTTS-R | en | 0 | 583.15 |
|
| 244 |
| LibriTTS-Vocoded | en | 0 | 2345.14 |
|
| 245 |
| LJSpeech | en | 23.92 | 0 |
|
| 246 |
-
|
|
| 247 |
| MLS | 8 languages | 50558.11 | 0 |
|
| 248 |
| SpoofCeleb | Multilingual | 173.00 | 1916.20 |
|
| 249 |
| VoiceMOS | en | 0 | 448.44 |
|
|
|
|
| 195 |
|
| 196 |
| Test Database | ROC AUC | Accuracy | Precision | Recall | F1-score | FPR | FNR | EER (%) @ Threshold |
|
| 197 |
|----------------------|---------|----------|-----------|--------|----------|-------|-------|----------------------|
|
| 198 |
+
| ADD2023 | 0.752 | 0.591 | 0.867 | 0.528 | 0.656 | 0.230 | 0.472 | 35.34 @ 0.2345 |
|
| 199 |
+
| DeepVoice | 0.932 | 0.753 | 0.322 | 0.915 | 0.477 | 0.270 | 0.085 | 14.84 @ 0.7575 |
|
| 200 |
+
| FakeOrReal | 0.994 | 0.826 | 0.999 | 0.644 | 0.783 | 0.001 | 0.356 | 3.67 @ 0.0336 |
|
| 201 |
+
| FakeOrReal-norm | 0.910 | 0.784 | 0.991 | 0.563 | 0.718 | 0.005 | 0.437 | 15.56 @ 0.0758 |
|
| 202 |
| In-the-Wild | 0.919 | 0.733 | 0.969 | 0.594 | 0.737 | 0.032 | 0.406 | 17.99 @ 0.0841 |
|
| 203 |
+
| Deepfake-Eval-2024 | 0.507 | 0.560 | 0.623 | 0.744 | 0.678 | 0.743 | 0.257 | 50.99 @ 0.8029 |
|
| 204 |
|
| 205 |
|
| 206 |
You can also fine-tune this model on a specific database, the corresponding code is provided in our [GitHub repository](https://github.com/nii-yamagishilab/AntiDeepfake). Fine-tuning will follow a similar process to training a new model, except that model weights will be initialized as AntiDeepfake checkpoints.
|
|
|
|
| 243 |
| LibriTTS-R | en | 0 | 583.15 |
|
| 244 |
| LibriTTS-Vocoded | en | 0 | 2345.14 |
|
| 245 |
| LJSpeech | en | 23.92 | 0 |
|
| 246 |
+
| MLAAD | 38 languages | 0 | 377.96 |
|
| 247 |
| MLS | 8 languages | 50558.11 | 0 |
|
| 248 |
| SpoofCeleb | Multilingual | 173.00 | 1916.20 |
|
| 249 |
| VoiceMOS | en | 0 | 448.44 |
|