Update test model file for PEFT
Browse files- modeling_mpt.py +78 -14
modeling_mpt.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
"""A simple, flexible implementation of a GPT model.
|
| 2 |
-
|
| 3 |
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
|
| 4 |
"""
|
| 5 |
import math
|
|
@@ -25,16 +24,24 @@ except:
|
|
| 25 |
pass
|
| 26 |
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
| 27 |
|
|
|
|
| 28 |
class MPTPreTrainedModel(PreTrainedModel):
|
| 29 |
config_class = MPTConfig
|
| 30 |
base_model_prefix = 'model'
|
| 31 |
-
_no_split_modules = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
class MPTModel(MPTPreTrainedModel):
|
| 34 |
|
| 35 |
def __init__(self, config: MPTConfig):
|
| 36 |
config._validate_config()
|
| 37 |
super().__init__(config)
|
|
|
|
| 38 |
self.attn_impl = config.attn_config['attn_impl']
|
| 39 |
self.prefix_lm = config.attn_config['prefix_lm']
|
| 40 |
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
|
@@ -140,7 +147,43 @@ class MPTModel(MPTPreTrainedModel):
|
|
| 140 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
| 141 |
return attn_bias
|
| 142 |
|
| 143 |
-
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 145 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 146 |
if attention_mask is not None:
|
|
@@ -156,13 +199,15 @@ class MPTModel(MPTPreTrainedModel):
|
|
| 156 |
raise NotImplementedError('MPT does not support training with left padding.')
|
| 157 |
if self.prefix_lm and prefix_mask is None:
|
| 158 |
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
| 159 |
-
if inputs_embeds is not None:
|
| 160 |
-
raise NotImplementedError('inputs_embeds is not implemented for MPT.')
|
| 161 |
if self.training:
|
| 162 |
if self.attn_uses_sequence_id and sequence_id is None:
|
| 163 |
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
| 164 |
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
| 165 |
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
S = input_ids.size(1)
|
| 167 |
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
| 168 |
tok_emb = self.wte(input_ids)
|
|
@@ -199,7 +244,27 @@ class MPTModel(MPTPreTrainedModel):
|
|
| 199 |
assert all_hidden_states is not None
|
| 200 |
all_hidden_states = all_hidden_states + (x,)
|
| 201 |
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
| 202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
if past_key_values is not None:
|
| 204 |
past_key_values[b_idx] = past_key_value
|
| 205 |
if output_attentions:
|
|
@@ -227,7 +292,6 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
| 227 |
super().__init__(config)
|
| 228 |
if not config.tie_word_embeddings:
|
| 229 |
raise ValueError('MPTForCausalLM only supports tied word embeddings')
|
| 230 |
-
print(f'Instantiating an MPTForCausalLM model from {__file__}')
|
| 231 |
self.transformer = MPTModel(config)
|
| 232 |
for child in self.transformer.children():
|
| 233 |
if isinstance(child, torch.nn.ModuleList):
|
|
@@ -262,13 +326,14 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
| 262 |
def get_decoder(self):
|
| 263 |
return self.transformer
|
| 264 |
|
| 265 |
-
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None,
|
|
|
|
| 266 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 267 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
logits =
|
| 272 |
if self.logit_scale is not None:
|
| 273 |
if self.logit_scale == 0:
|
| 274 |
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
|
|
@@ -313,11 +378,10 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
| 313 |
@staticmethod
|
| 314 |
def _reorder_cache(past_key_values, beam_idx):
|
| 315 |
"""Used by HuggingFace generate when using beam search with kv-caching.
|
| 316 |
-
|
| 317 |
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
|
| 318 |
for an example in transformers.
|
| 319 |
"""
|
| 320 |
reordered_past = []
|
| 321 |
for layer_past in past_key_values:
|
| 322 |
reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))]
|
| 323 |
-
return reordered_past
|
|
|
|
| 1 |
"""A simple, flexible implementation of a GPT model.
|
|
|
|
| 2 |
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
|
| 3 |
"""
|
| 4 |
import math
|
|
|
|
| 24 |
pass
|
| 25 |
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
| 26 |
|
| 27 |
+
|
| 28 |
class MPTPreTrainedModel(PreTrainedModel):
|
| 29 |
config_class = MPTConfig
|
| 30 |
base_model_prefix = 'model'
|
| 31 |
+
_no_split_modules = ["MPTBlock"]
|
| 32 |
+
supports_gradient_checkpointing = True
|
| 33 |
+
|
| 34 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 35 |
+
if isinstance(module, MPTModel):
|
| 36 |
+
module.gradient_checkpointing = value
|
| 37 |
+
|
| 38 |
|
| 39 |
class MPTModel(MPTPreTrainedModel):
|
| 40 |
|
| 41 |
def __init__(self, config: MPTConfig):
|
| 42 |
config._validate_config()
|
| 43 |
super().__init__(config)
|
| 44 |
+
self.gradient_checkpointing = False
|
| 45 |
self.attn_impl = config.attn_config['attn_impl']
|
| 46 |
self.prefix_lm = config.attn_config['prefix_lm']
|
| 47 |
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
|
|
|
| 147 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
| 148 |
return attn_bias
|
| 149 |
|
| 150 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
|
| 151 |
+
attention_mask: Optional[torch.ByteTensor] = None, prefix_mask: Optional[torch.ByteTensor] = None,
|
| 152 |
+
sequence_id: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None,
|
| 153 |
+
output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
|
| 154 |
+
use_cache: Optional[bool] = None, inputs_embeds: Optional[torch.FloatTensor] = None):
|
| 155 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 156 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 157 |
+
if self.gradient_checkpointing and self.training:
|
| 158 |
+
if use_cache:
|
| 159 |
+
use_cache = False
|
| 160 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 161 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
| 162 |
+
elif input_ids is not None:
|
| 163 |
+
batch_size, seq_length = input_ids.shape
|
| 164 |
+
elif inputs_embeds is not None:
|
| 165 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 166 |
+
else:
|
| 167 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
| 168 |
+
|
| 169 |
+
seq_length_with_past = seq_length
|
| 170 |
+
past_key_values_length = 0
|
| 171 |
+
|
| 172 |
+
if past_key_values is not None:
|
| 173 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
| 174 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 175 |
+
|
| 176 |
+
if attention_mask is not None:
|
| 177 |
+
attention_mask = attention_mask.bool()
|
| 178 |
+
else:
|
| 179 |
+
attention_mask = torch.ones(
|
| 180 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
if inputs_embeds is None:
|
| 184 |
+
tok_emb = self.wte(input_ids)
|
| 185 |
+
else:
|
| 186 |
+
tok_emb = inputs_embeds
|
| 187 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 188 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 189 |
if attention_mask is not None:
|
|
|
|
| 199 |
raise NotImplementedError('MPT does not support training with left padding.')
|
| 200 |
if self.prefix_lm and prefix_mask is None:
|
| 201 |
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
|
|
|
|
|
|
| 202 |
if self.training:
|
| 203 |
if self.attn_uses_sequence_id and sequence_id is None:
|
| 204 |
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
| 205 |
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
| 206 |
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
|
| 207 |
+
if self.gradient_checkpointing and self.training:
|
| 208 |
+
if use_cache:
|
| 209 |
+
use_cache = False
|
| 210 |
+
|
| 211 |
S = input_ids.size(1)
|
| 212 |
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
| 213 |
tok_emb = self.wte(input_ids)
|
|
|
|
| 244 |
assert all_hidden_states is not None
|
| 245 |
all_hidden_states = all_hidden_states + (x,)
|
| 246 |
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
| 247 |
+
if self.gradient_checkpointing and self.training:
|
| 248 |
+
|
| 249 |
+
def create_custom_forward(module):
|
| 250 |
+
def custom_forward(*inputs):
|
| 251 |
+
# None for past_key_value
|
| 252 |
+
return module(*inputs)
|
| 253 |
+
|
| 254 |
+
return custom_forward
|
| 255 |
+
|
| 256 |
+
(x, attn_weights, past_key_value) = torch.utils.checkpoint.checkpoint(
|
| 257 |
+
create_custom_forward(block),
|
| 258 |
+
x,
|
| 259 |
+
past_key_value,
|
| 260 |
+
attn_bias,
|
| 261 |
+
attention_mask,
|
| 262 |
+
self.is_causal,
|
| 263 |
+
)
|
| 264 |
+
else:
|
| 265 |
+
(x, attn_weights, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias,
|
| 266 |
+
attention_mask=attention_mask, is_causal=self.is_causal)
|
| 267 |
+
|
| 268 |
if past_key_values is not None:
|
| 269 |
past_key_values[b_idx] = past_key_value
|
| 270 |
if output_attentions:
|
|
|
|
| 292 |
super().__init__(config)
|
| 293 |
if not config.tie_word_embeddings:
|
| 294 |
raise ValueError('MPTForCausalLM only supports tied word embeddings')
|
|
|
|
| 295 |
self.transformer = MPTModel(config)
|
| 296 |
for child in self.transformer.children():
|
| 297 |
if isinstance(child, torch.nn.ModuleList):
|
|
|
|
| 326 |
def get_decoder(self):
|
| 327 |
return self.transformer
|
| 328 |
|
| 329 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None,
|
| 330 |
+
inputs_embeds: Optional[torch.FloatTensor]=None):
|
| 331 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 332 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 333 |
+
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache,
|
| 334 |
+
inputs_embeds=inputs_embeds)
|
| 335 |
+
#logits = self.transformer.wte(outputs.last_hidden_state.to(self.transformer.wte.weight.device), True)
|
| 336 |
+
logits = F.linear(outputs.last_hidden_state.to(self.transformer.wte.weight.device), self.transformer.wte.weight)
|
| 337 |
if self.logit_scale is not None:
|
| 338 |
if self.logit_scale == 0:
|
| 339 |
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
|
|
|
|
| 378 |
@staticmethod
|
| 379 |
def _reorder_cache(past_key_values, beam_idx):
|
| 380 |
"""Used by HuggingFace generate when using beam search with kv-caching.
|
|
|
|
| 381 |
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
|
| 382 |
for an example in transformers.
|
| 383 |
"""
|
| 384 |
reordered_past = []
|
| 385 |
for layer_past in past_key_values:
|
| 386 |
reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))]
|
| 387 |
+
return reordered_past
|