Training in progress, step 500
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- code/README.md +4 -0
- code/Untitled.ipynb +1093 -0
- code/__pycache__/generate_and_eval.cpython-311.pyc +0 -0
- code/__pycache__/generate_vllm.cpython-311.pyc +0 -0
- code/__pycache__/scalar_rm_model.cpython-311.pyc +0 -0
- code/callbacks.py +471 -0
- code/configs/accelerate_zero2_4gpu.yml +20 -0
- code/configs/create_rlhf_410m.yml +11 -0
- code/configs/create_rlhf_410m_1b.yml +11 -0
- code/configs/dpo1b2_10k_pythia410m_fp16.yml +19 -0
- code/configs/dpo1b2_20k-reuse_pythia410m_fp16.yml +19 -0
- code/configs/dpo1b2_20k_pythia410m-iter1_fp16.yml +19 -0
- code/configs/dpo1b2_20k_pythia410m_fp16.yml +19 -0
- code/configs/dpo1b2_20kgold_pythia410m-iter1_fp16.yml +19 -0
- code/configs/dpo1b2_20kgold_pythia410m_fp16.yml +19 -0
- code/configs/dpo1b2_20kgoldonly_pythia410m-iter1_fp16.yml +20 -0
- code/configs/dpo1b2_20kgoldonly_pythia410m_fp16.yml +20 -0
- code/configs/dpo1b2_20konly-reuse_pythia410m_fp16.yml +20 -0
- code/configs/dpo1b2_20konly_pythia410m-iter1_fp16.yml +20 -0
- code/configs/dpo1b2_20konly_pythia410m_fp16.yml +20 -0
- code/configs/dpo1b2_a100.yml +20 -0
- code/configs/dpo1b_eval_generated_pythia410m_fp16.yml +11 -0
- code/configs/dpo1b_eval_pythia410m_fp16.yml +19 -0
- code/configs/dpo1b_eval_regenerated_pythia410m_fp16.yml +11 -0
- code/configs/dpo1b_predict_generated_pythia410m-dpo1.yml +11 -0
- code/configs/dpo1b_pythia410m_fp16.yml +18 -0
- code/configs/dpo1b_relabel_comparisons.yml +12 -0
- code/configs/dpo1b_relabel_generated_pythia410m_fp16.yml +12 -0
- code/configs/dpo1b_relabel_generated_same_prompts.yml +12 -0
- code/configs/dpo1b_relabel_vllm_generated_pythia410m.yml +12 -0
- code/configs/dpo1b_test.yml +19 -0
- code/configs/dpo1b_vllm_pythia410m.yml +18 -0
- code/configs/dpo2_costa_1b_20k_bf16.yml +36 -0
- code/configs/dpo2_costa_1b_20k_fp16.yml +35 -0
- code/configs/dpo2_pythia2.8b_tldr.yml +34 -0
- code/configs/dpo_1b_bf16.yml +28 -0
- code/configs/dpo_1b_fp16.yml +31 -0
- code/configs/dpo_20konly_1b_bf16.yml +32 -0
- code/configs/dpo_20konly_1b_fp16.yml +33 -0
- code/configs/dpo_costa_1b_constantlr_fp16.yml +32 -0
- code/configs/dpo_costa_1b_fp16.yml +32 -0
- code/configs/dpo_eval_1b_fp16.yml +32 -0
- code/configs/dpo_eval_costa_1b_bf16.yml +36 -0
- code/configs/dpo_eval_costa_1b_fp16.yml +34 -0
- code/configs/dpo_pythia1b_hh_rlhf.yml +36 -0
- code/configs/dpo_pythia1b_hh_rlhf_fp16_4V100.yml +36 -0
- code/configs/dpo_pythia2.8b_hh_rlhf_fp16_4V100.yml +36 -0
- code/configs/dpo_relabel.yml +19 -0
- code/configs/dpo_relabel_summarize_generated_1b_dpo.yml +19 -0
- code/configs/dpo_test.yml +24 -0
code/README.md
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# how to generate and psuedo label
|
| 2 |
+
|
| 3 |
+
- generate with `generate_vllm.py`
|
| 4 |
+
- pseudolabel with either `dpo_training.py` or `gpt_reward_modeling.py` by setting `mode = relabel`
|
code/Untitled.ipynb
ADDED
|
@@ -0,0 +1,1093 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 2,
|
| 6 |
+
"id": "070a4097-7a17-409f-af5d-3d0cf43926ca",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"from peft import AutoPeftModelForCausalLM, PeftModelForCausalLM\n",
|
| 11 |
+
"from huggingface_hub import list_repo_refs\n",
|
| 12 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM"
|
| 13 |
+
]
|
| 14 |
+
},
|
| 15 |
+
{
|
| 16 |
+
"cell_type": "code",
|
| 17 |
+
"execution_count": 4,
|
| 18 |
+
"id": "100ec138-f7c1-4d8f-b7e0-eb715f320fdc",
|
| 19 |
+
"metadata": {},
|
| 20 |
+
"outputs": [
|
| 21 |
+
{
|
| 22 |
+
"name": "stderr",
|
| 23 |
+
"output_type": "stream",
|
| 24 |
+
"text": [
|
| 25 |
+
"Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
|
| 26 |
+
]
|
| 27 |
+
}
|
| 28 |
+
],
|
| 29 |
+
"source": [
|
| 30 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"mnoukhov/pythia410m-tldr-sft\")"
|
| 31 |
+
]
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"cell_type": "code",
|
| 35 |
+
"execution_count": 9,
|
| 36 |
+
"id": "dbc9a2db-2c16-4e8f-bd2a-213ddc5d139d",
|
| 37 |
+
"metadata": {},
|
| 38 |
+
"outputs": [
|
| 39 |
+
{
|
| 40 |
+
"data": {
|
| 41 |
+
"text/plain": [
|
| 42 |
+
"0"
|
| 43 |
+
]
|
| 44 |
+
},
|
| 45 |
+
"execution_count": 9,
|
| 46 |
+
"metadata": {},
|
| 47 |
+
"output_type": "execute_result"
|
| 48 |
+
}
|
| 49 |
+
],
|
| 50 |
+
"source": [
|
| 51 |
+
"tokenizer.add_special_tokens({\"pad_token\": \"<|padding|>\"}) "
|
| 52 |
+
]
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"cell_type": "code",
|
| 56 |
+
"execution_count": 16,
|
| 57 |
+
"id": "03788af8-6733-492f-84e3-fd358bb88ffd",
|
| 58 |
+
"metadata": {},
|
| 59 |
+
"outputs": [
|
| 60 |
+
{
|
| 61 |
+
"data": {
|
| 62 |
+
"text/plain": [
|
| 63 |
+
"1"
|
| 64 |
+
]
|
| 65 |
+
},
|
| 66 |
+
"execution_count": 16,
|
| 67 |
+
"metadata": {},
|
| 68 |
+
"output_type": "execute_result"
|
| 69 |
+
}
|
| 70 |
+
],
|
| 71 |
+
"source": [
|
| 72 |
+
"tokenizer.pad_token_id"
|
| 73 |
+
]
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"cell_type": "code",
|
| 77 |
+
"execution_count": 12,
|
| 78 |
+
"id": "576d3fda-7902-43d7-b4b1-3054f6192b11",
|
| 79 |
+
"metadata": {},
|
| 80 |
+
"outputs": [],
|
| 81 |
+
"source": [
|
| 82 |
+
"example_text = \"hello my name is mr hello\""
|
| 83 |
+
]
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"cell_type": "code",
|
| 87 |
+
"execution_count": 24,
|
| 88 |
+
"id": "c73ddb0c-1551-4b12-82d8-26d3742d6f57",
|
| 89 |
+
"metadata": {},
|
| 90 |
+
"outputs": [],
|
| 91 |
+
"source": [
|
| 92 |
+
"toks = tokenizer(example_text + tokenizer.eos_token, padding=\"max_length\", max_length=7, truncation=True)"
|
| 93 |
+
]
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"cell_type": "code",
|
| 97 |
+
"execution_count": 25,
|
| 98 |
+
"id": "8904af15-4d27-4718-b53a-060ae65173a9",
|
| 99 |
+
"metadata": {},
|
| 100 |
+
"outputs": [
|
| 101 |
+
{
|
| 102 |
+
"data": {
|
| 103 |
+
"text/plain": [
|
| 104 |
+
"{'input_ids': [25521, 619, 1416, 310, 278, 83, 23120], 'attention_mask': [1, 1, 1, 1, 1, 1, 1]}"
|
| 105 |
+
]
|
| 106 |
+
},
|
| 107 |
+
"execution_count": 25,
|
| 108 |
+
"metadata": {},
|
| 109 |
+
"output_type": "execute_result"
|
| 110 |
+
}
|
| 111 |
+
],
|
| 112 |
+
"source": [
|
| 113 |
+
"toks"
|
| 114 |
+
]
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"cell_type": "code",
|
| 118 |
+
"execution_count": 26,
|
| 119 |
+
"id": "8fcf7c83-e8df-457b-9eab-1b1ed2145a76",
|
| 120 |
+
"metadata": {},
|
| 121 |
+
"outputs": [
|
| 122 |
+
{
|
| 123 |
+
"data": {
|
| 124 |
+
"text/plain": [
|
| 125 |
+
"7"
|
| 126 |
+
]
|
| 127 |
+
},
|
| 128 |
+
"execution_count": 26,
|
| 129 |
+
"metadata": {},
|
| 130 |
+
"output_type": "execute_result"
|
| 131 |
+
}
|
| 132 |
+
],
|
| 133 |
+
"source": [
|
| 134 |
+
"sum(toks['attention_mask'])"
|
| 135 |
+
]
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"cell_type": "code",
|
| 139 |
+
"execution_count": 2,
|
| 140 |
+
"id": "ef1dddf6-1d26-4950-910a-c40b2cc394c6",
|
| 141 |
+
"metadata": {},
|
| 142 |
+
"outputs": [],
|
| 143 |
+
"source": [
|
| 144 |
+
"base_model_name = \"vwxyzjn/EleutherAI_pythia-1b-deduped__sft__tldr\"\n",
|
| 145 |
+
"base_model_revision = \"sft__55513__1706646024\""
|
| 146 |
+
]
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"cell_type": "code",
|
| 150 |
+
"execution_count": 35,
|
| 151 |
+
"id": "bb0df32c-9d90-4ab0-a87d-0ff6ecab03b6",
|
| 152 |
+
"metadata": {},
|
| 153 |
+
"outputs": [],
|
| 154 |
+
"source": [
|
| 155 |
+
"model_path = \"/home/toolkit/trl_results/mnoukhov/EleutherAI_pythia-1b-deduped__sft__tldr_dpo_costa_1b_fp16.yml_3d94f50_b9ff2_merged/main\""
|
| 156 |
+
]
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"cell_type": "code",
|
| 160 |
+
"execution_count": 36,
|
| 161 |
+
"id": "3ae77b2a-3132-4dd1-903b-35f28b7e7e5f",
|
| 162 |
+
"metadata": {},
|
| 163 |
+
"outputs": [],
|
| 164 |
+
"source": [
|
| 165 |
+
"base_model = AutoModelForCausalLM.from_pretrained(model_path)"
|
| 166 |
+
]
|
| 167 |
+
},
|
| 168 |
+
{
|
| 169 |
+
"cell_type": "code",
|
| 170 |
+
"execution_count": 37,
|
| 171 |
+
"id": "08c1d05d-44a4-4859-9d54-48e7a3cd1da7",
|
| 172 |
+
"metadata": {},
|
| 173 |
+
"outputs": [
|
| 174 |
+
{
|
| 175 |
+
"data": {
|
| 176 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 177 |
+
"model_id": "12749e76749a40469d7732dc23e0f1dc",
|
| 178 |
+
"version_major": 2,
|
| 179 |
+
"version_minor": 0
|
| 180 |
+
},
|
| 181 |
+
"text/plain": [
|
| 182 |
+
"model.safetensors: 0%| | 0.00/4.05G [00:00<?, ?B/s]"
|
| 183 |
+
]
|
| 184 |
+
},
|
| 185 |
+
"metadata": {},
|
| 186 |
+
"output_type": "display_data"
|
| 187 |
+
},
|
| 188 |
+
{
|
| 189 |
+
"data": {
|
| 190 |
+
"text/plain": [
|
| 191 |
+
"CommitInfo(commit_url='https://huggingface.co/mnoukhov/EleutherAI_pythia-1b-deduped__sft__tldr_dpo_costa_1b_fp16.yml_3d94f50_b9ff2_merged/commit/cd8f4bf53ab02881549cb73b6271005b2e8c3be6', commit_message='Upload GPTNeoXForCausalLM', commit_description='', oid='cd8f4bf53ab02881549cb73b6271005b2e8c3be6', pr_url=None, pr_revision=None, pr_num=None)"
|
| 192 |
+
]
|
| 193 |
+
},
|
| 194 |
+
"execution_count": 37,
|
| 195 |
+
"metadata": {},
|
| 196 |
+
"output_type": "execute_result"
|
| 197 |
+
}
|
| 198 |
+
],
|
| 199 |
+
"source": [
|
| 200 |
+
"base_model.push_to_hub(\"mnoukhov/EleutherAI_pythia-1b-deduped__sft__tldr_dpo_costa_1b_fp16.yml_3d94f50_b9ff2_merged\")"
|
| 201 |
+
]
|
| 202 |
+
},
|
| 203 |
+
{
|
| 204 |
+
"cell_type": "code",
|
| 205 |
+
"execution_count": 4,
|
| 206 |
+
"id": "9ef8927b-f908-460f-adba-54508b133ae0",
|
| 207 |
+
"metadata": {},
|
| 208 |
+
"outputs": [],
|
| 209 |
+
"source": [
|
| 210 |
+
"adapter_repo = \"mnoukhov/EleutherAI_pythia-1b-deduped__sft__tldr_dpo_1b_fp16.yml_24e9f83\""
|
| 211 |
+
]
|
| 212 |
+
},
|
| 213 |
+
{
|
| 214 |
+
"cell_type": "code",
|
| 215 |
+
"execution_count": 5,
|
| 216 |
+
"id": "cb7336d2-a4ac-4607-83ae-e7e1e0b1665d",
|
| 217 |
+
"metadata": {},
|
| 218 |
+
"outputs": [],
|
| 219 |
+
"source": [
|
| 220 |
+
"refs = list_repo_refs(adapter_repo)"
|
| 221 |
+
]
|
| 222 |
+
},
|
| 223 |
+
{
|
| 224 |
+
"cell_type": "code",
|
| 225 |
+
"execution_count": 6,
|
| 226 |
+
"id": "2ab002af-7f3b-41b1-a8ad-f7c2296bd68f",
|
| 227 |
+
"metadata": {},
|
| 228 |
+
"outputs": [
|
| 229 |
+
{
|
| 230 |
+
"data": {
|
| 231 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 232 |
+
"model_id": "f4c8e90f4fba4589a00ec3ee75dc7505",
|
| 233 |
+
"version_major": 2,
|
| 234 |
+
"version_minor": 0
|
| 235 |
+
},
|
| 236 |
+
"text/plain": [
|
| 237 |
+
"adapter_config.json: 0%| | 0.00/706 [00:00<?, ?B/s]"
|
| 238 |
+
]
|
| 239 |
+
},
|
| 240 |
+
"metadata": {},
|
| 241 |
+
"output_type": "display_data"
|
| 242 |
+
},
|
| 243 |
+
{
|
| 244 |
+
"data": {
|
| 245 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 246 |
+
"model_id": "1eb21476d51f44858c32c59e72d70105",
|
| 247 |
+
"version_major": 2,
|
| 248 |
+
"version_minor": 0
|
| 249 |
+
},
|
| 250 |
+
"text/plain": [
|
| 251 |
+
"adapter_model.safetensors: 0%| | 0.00/18.5M [00:00<?, ?B/s]"
|
| 252 |
+
]
|
| 253 |
+
},
|
| 254 |
+
"metadata": {},
|
| 255 |
+
"output_type": "display_data"
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"data": {
|
| 259 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 260 |
+
"model_id": "014e10f937374412aa10524d1a4d7a8f",
|
| 261 |
+
"version_major": 2,
|
| 262 |
+
"version_minor": 0
|
| 263 |
+
},
|
| 264 |
+
"text/plain": [
|
| 265 |
+
"model.safetensors: 0%| | 0.00/4.05G [00:00<?, ?B/s]"
|
| 266 |
+
]
|
| 267 |
+
},
|
| 268 |
+
"metadata": {},
|
| 269 |
+
"output_type": "display_data"
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"name": "stdout",
|
| 273 |
+
"output_type": "stream",
|
| 274 |
+
"text": [
|
| 275 |
+
"step2324\n"
|
| 276 |
+
]
|
| 277 |
+
},
|
| 278 |
+
{
|
| 279 |
+
"data": {
|
| 280 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 281 |
+
"model_id": "7c55865b8a7f4c6795b22c0a68b702a6",
|
| 282 |
+
"version_major": 2,
|
| 283 |
+
"version_minor": 0
|
| 284 |
+
},
|
| 285 |
+
"text/plain": [
|
| 286 |
+
"adapter_model.safetensors: 0%| | 0.00/18.5M [00:00<?, ?B/s]"
|
| 287 |
+
]
|
| 288 |
+
},
|
| 289 |
+
"metadata": {},
|
| 290 |
+
"output_type": "display_data"
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"data": {
|
| 294 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 295 |
+
"model_id": "58cb851b46974ae5a3cb066717520f8d",
|
| 296 |
+
"version_major": 2,
|
| 297 |
+
"version_minor": 0
|
| 298 |
+
},
|
| 299 |
+
"text/plain": [
|
| 300 |
+
"model.safetensors: 0%| | 0.00/4.05G [00:00<?, ?B/s]"
|
| 301 |
+
]
|
| 302 |
+
},
|
| 303 |
+
"metadata": {},
|
| 304 |
+
"output_type": "display_data"
|
| 305 |
+
},
|
| 306 |
+
{
|
| 307 |
+
"name": "stdout",
|
| 308 |
+
"output_type": "stream",
|
| 309 |
+
"text": [
|
| 310 |
+
"step1743\n"
|
| 311 |
+
]
|
| 312 |
+
},
|
| 313 |
+
{
|
| 314 |
+
"data": {
|
| 315 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 316 |
+
"model_id": "742410c4a20d4a09b10c0c96c8977df5",
|
| 317 |
+
"version_major": 2,
|
| 318 |
+
"version_minor": 0
|
| 319 |
+
},
|
| 320 |
+
"text/plain": [
|
| 321 |
+
"adapter_model.safetensors: 0%| | 0.00/18.5M [00:00<?, ?B/s]"
|
| 322 |
+
]
|
| 323 |
+
},
|
| 324 |
+
"metadata": {},
|
| 325 |
+
"output_type": "display_data"
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"data": {
|
| 329 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 330 |
+
"model_id": "48117e9ab89248038fa8a76ca9a191db",
|
| 331 |
+
"version_major": 2,
|
| 332 |
+
"version_minor": 0
|
| 333 |
+
},
|
| 334 |
+
"text/plain": [
|
| 335 |
+
"model.safetensors: 0%| | 0.00/4.05G [00:00<?, ?B/s]"
|
| 336 |
+
]
|
| 337 |
+
},
|
| 338 |
+
"metadata": {},
|
| 339 |
+
"output_type": "display_data"
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"name": "stdout",
|
| 343 |
+
"output_type": "stream",
|
| 344 |
+
"text": [
|
| 345 |
+
"step1162\n"
|
| 346 |
+
]
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"data": {
|
| 350 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 351 |
+
"model_id": "9b9cef19d78c465f900e345ac44acae6",
|
| 352 |
+
"version_major": 2,
|
| 353 |
+
"version_minor": 0
|
| 354 |
+
},
|
| 355 |
+
"text/plain": [
|
| 356 |
+
"adapter_model.safetensors: 0%| | 0.00/18.5M [00:00<?, ?B/s]"
|
| 357 |
+
]
|
| 358 |
+
},
|
| 359 |
+
"metadata": {},
|
| 360 |
+
"output_type": "display_data"
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"data": {
|
| 364 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 365 |
+
"model_id": "08878fc4eb1a407bb6238d4bec9e2817",
|
| 366 |
+
"version_major": 2,
|
| 367 |
+
"version_minor": 0
|
| 368 |
+
},
|
| 369 |
+
"text/plain": [
|
| 370 |
+
"model.safetensors: 0%| | 0.00/4.05G [00:00<?, ?B/s]"
|
| 371 |
+
]
|
| 372 |
+
},
|
| 373 |
+
"metadata": {},
|
| 374 |
+
"output_type": "display_data"
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"name": "stdout",
|
| 378 |
+
"output_type": "stream",
|
| 379 |
+
"text": [
|
| 380 |
+
"step581\n"
|
| 381 |
+
]
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"data": {
|
| 385 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 386 |
+
"model_id": "f39fc2322c504c4b9d6b601bbcbbb923",
|
| 387 |
+
"version_major": 2,
|
| 388 |
+
"version_minor": 0
|
| 389 |
+
},
|
| 390 |
+
"text/plain": [
|
| 391 |
+
"adapter_model.safetensors: 0%| | 0.00/18.5M [00:00<?, ?B/s]"
|
| 392 |
+
]
|
| 393 |
+
},
|
| 394 |
+
"metadata": {},
|
| 395 |
+
"output_type": "display_data"
|
| 396 |
+
},
|
| 397 |
+
{
|
| 398 |
+
"name": "stdout",
|
| 399 |
+
"output_type": "stream",
|
| 400 |
+
"text": [
|
| 401 |
+
"step1\n"
|
| 402 |
+
]
|
| 403 |
+
}
|
| 404 |
+
],
|
| 405 |
+
"source": [
|
| 406 |
+
"for branch in refs.branches:\n",
|
| 407 |
+
" if branch.name == \"main\":\n",
|
| 408 |
+
" continue\n",
|
| 409 |
+
"\n",
|
| 410 |
+
" model = PeftModelForCausalLM.from_pretrained(base_model, adapter_repo, revision=branch.name)\n",
|
| 411 |
+
" merged = model.merge_and_unload()\n",
|
| 412 |
+
" merged.push_to_hub(f\"{adapter_repo}_merged\", revision=branch.name)\n",
|
| 413 |
+
" print(branch.name)"
|
| 414 |
+
]
|
| 415 |
+
},
|
| 416 |
+
{
|
| 417 |
+
"cell_type": "code",
|
| 418 |
+
"execution_count": 1,
|
| 419 |
+
"id": "24627996-2bc2-4944-a36c-0d86108a82c6",
|
| 420 |
+
"metadata": {},
|
| 421 |
+
"outputs": [],
|
| 422 |
+
"source": [
|
| 423 |
+
"from datasets import load_dataset, builder, load_from_disk\n",
|
| 424 |
+
"builder.has_sufficient_disk_space = lambda needed_bytes, directory=\".\": True "
|
| 425 |
+
]
|
| 426 |
+
},
|
| 427 |
+
{
|
| 428 |
+
"cell_type": "code",
|
| 429 |
+
"execution_count": 4,
|
| 430 |
+
"id": "ab8916ed-d39b-4d64-b287-ea4569567005",
|
| 431 |
+
"metadata": {},
|
| 432 |
+
"outputs": [],
|
| 433 |
+
"source": [
|
| 434 |
+
"ds = load_from_disk(\"/home/toolkit/trl_results/vwxyzjn_summarize_from_feedback_tldr_3_filtered_oai_preprocessing_1706381144/vwxyzjn_EleutherAI_pythia-1b-deduped__dpo__tldr\")"
|
| 435 |
+
]
|
| 436 |
+
},
|
| 437 |
+
{
|
| 438 |
+
"cell_type": "code",
|
| 439 |
+
"execution_count": 11,
|
| 440 |
+
"id": "6ee65d83-872d-4d96-9c81-be53f2fc54c1",
|
| 441 |
+
"metadata": {},
|
| 442 |
+
"outputs": [
|
| 443 |
+
{
|
| 444 |
+
"data": {
|
| 445 |
+
"text/plain": [
|
| 446 |
+
"'?'"
|
| 447 |
+
]
|
| 448 |
+
},
|
| 449 |
+
"execution_count": 11,
|
| 450 |
+
"metadata": {},
|
| 451 |
+
"output_type": "execute_result"
|
| 452 |
+
}
|
| 453 |
+
],
|
| 454 |
+
"source": [
|
| 455 |
+
"ds['generations_dpo__55513__1707379566'][0][-1]"
|
| 456 |
+
]
|
| 457 |
+
},
|
| 458 |
+
{
|
| 459 |
+
"cell_type": "code",
|
| 460 |
+
"execution_count": 13,
|
| 461 |
+
"id": "a11a3760-515b-4a02-9053-853aa3b06fd4",
|
| 462 |
+
"metadata": {},
|
| 463 |
+
"outputs": [],
|
| 464 |
+
"source": [
|
| 465 |
+
"ppo_ds = load_from_disk(\"vwxyzjn_summarize_from_feedback_tldr_3_filtered_oai_preprocessing_1706381144/vwxyzjn_EleutherAI_pythia-1b-deduped__ppo_left_padding_new_nowhiten_reward__tldr\")"
|
| 466 |
+
]
|
| 467 |
+
},
|
| 468 |
+
{
|
| 469 |
+
"cell_type": "code",
|
| 470 |
+
"execution_count": 24,
|
| 471 |
+
"id": "5d0c3c4f-71b1-46b0-abdb-036e1bd49a26",
|
| 472 |
+
"metadata": {},
|
| 473 |
+
"outputs": [],
|
| 474 |
+
"source": [
|
| 475 |
+
"text = ppo_ds[\"generations_ppo_left_padding_new_nowhiten_reward__55513__1709671967\"][0]"
|
| 476 |
+
]
|
| 477 |
+
},
|
| 478 |
+
{
|
| 479 |
+
"cell_type": "code",
|
| 480 |
+
"execution_count": 3,
|
| 481 |
+
"id": "8d2ec316-db2b-481b-9e25-82b2dd363772",
|
| 482 |
+
"metadata": {},
|
| 483 |
+
"outputs": [
|
| 484 |
+
{
|
| 485 |
+
"name": "stderr",
|
| 486 |
+
"output_type": "stream",
|
| 487 |
+
"text": [
|
| 488 |
+
"Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
|
| 489 |
+
]
|
| 490 |
+
}
|
| 491 |
+
],
|
| 492 |
+
"source": [
|
| 493 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"EleutherAI/pythia-6.9b-deduped\")"
|
| 494 |
+
]
|
| 495 |
+
},
|
| 496 |
+
{
|
| 497 |
+
"cell_type": "code",
|
| 498 |
+
"execution_count": 4,
|
| 499 |
+
"id": "1fedd4e0-a0a5-4499-9561-605e5adc8d88",
|
| 500 |
+
"metadata": {},
|
| 501 |
+
"outputs": [
|
| 502 |
+
{
|
| 503 |
+
"data": {
|
| 504 |
+
"text/plain": [
|
| 505 |
+
"[1]"
|
| 506 |
+
]
|
| 507 |
+
},
|
| 508 |
+
"execution_count": 4,
|
| 509 |
+
"metadata": {},
|
| 510 |
+
"output_type": "execute_result"
|
| 511 |
+
}
|
| 512 |
+
],
|
| 513 |
+
"source": [
|
| 514 |
+
"tokenizer.encode('<|padding|>')"
|
| 515 |
+
]
|
| 516 |
+
},
|
| 517 |
+
{
|
| 518 |
+
"cell_type": "code",
|
| 519 |
+
"execution_count": 5,
|
| 520 |
+
"id": "42b8260f-19a7-42e1-b809-a24deff3699c",
|
| 521 |
+
"metadata": {},
|
| 522 |
+
"outputs": [
|
| 523 |
+
{
|
| 524 |
+
"data": {
|
| 525 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 526 |
+
"model_id": "032ad7febe1b4eb9899d22e5d44d23a0",
|
| 527 |
+
"version_major": 2,
|
| 528 |
+
"version_minor": 0
|
| 529 |
+
},
|
| 530 |
+
"text/plain": [
|
| 531 |
+
"Downloading readme: 0%| | 0.00/456 [00:00<?, ?B/s]"
|
| 532 |
+
]
|
| 533 |
+
},
|
| 534 |
+
"metadata": {},
|
| 535 |
+
"output_type": "display_data"
|
| 536 |
+
},
|
| 537 |
+
{
|
| 538 |
+
"data": {
|
| 539 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 540 |
+
"model_id": "954fb6b000ac4b29b0c9033f242aac73",
|
| 541 |
+
"version_major": 2,
|
| 542 |
+
"version_minor": 0
|
| 543 |
+
},
|
| 544 |
+
"text/plain": [
|
| 545 |
+
"Downloading data: 0%| | 0.00/122M [00:00<?, ?B/s]"
|
| 546 |
+
]
|
| 547 |
+
},
|
| 548 |
+
"metadata": {},
|
| 549 |
+
"output_type": "display_data"
|
| 550 |
+
},
|
| 551 |
+
{
|
| 552 |
+
"data": {
|
| 553 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 554 |
+
"model_id": "3e544b20f15d48f59e901fbaf896a24d",
|
| 555 |
+
"version_major": 2,
|
| 556 |
+
"version_minor": 0
|
| 557 |
+
},
|
| 558 |
+
"text/plain": [
|
| 559 |
+
"Downloading data: 0%| | 0.00/6.54M [00:00<?, ?B/s]"
|
| 560 |
+
]
|
| 561 |
+
},
|
| 562 |
+
"metadata": {},
|
| 563 |
+
"output_type": "display_data"
|
| 564 |
+
},
|
| 565 |
+
{
|
| 566 |
+
"data": {
|
| 567 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 568 |
+
"model_id": "62d3170267d742ceaf6bdad2a2cef5ae",
|
| 569 |
+
"version_major": 2,
|
| 570 |
+
"version_minor": 0
|
| 571 |
+
},
|
| 572 |
+
"text/plain": [
|
| 573 |
+
"Generating train split: 0%| | 0/160800 [00:00<?, ? examples/s]"
|
| 574 |
+
]
|
| 575 |
+
},
|
| 576 |
+
"metadata": {},
|
| 577 |
+
"output_type": "display_data"
|
| 578 |
+
},
|
| 579 |
+
{
|
| 580 |
+
"data": {
|
| 581 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 582 |
+
"model_id": "ce7cff29f9c042949acad2dcec3ddd6e",
|
| 583 |
+
"version_major": 2,
|
| 584 |
+
"version_minor": 0
|
| 585 |
+
},
|
| 586 |
+
"text/plain": [
|
| 587 |
+
"Generating test split: 0%| | 0/8552 [00:00<?, ? examples/s]"
|
| 588 |
+
]
|
| 589 |
+
},
|
| 590 |
+
"metadata": {},
|
| 591 |
+
"output_type": "display_data"
|
| 592 |
+
}
|
| 593 |
+
],
|
| 594 |
+
"source": [
|
| 595 |
+
"ds = load_dataset(\"sophiex/hh-rlhf\")"
|
| 596 |
+
]
|
| 597 |
+
},
|
| 598 |
+
{
|
| 599 |
+
"cell_type": "code",
|
| 600 |
+
"execution_count": 9,
|
| 601 |
+
"id": "df1ccb5e-7206-45e7-a449-76b64fda72ed",
|
| 602 |
+
"metadata": {},
|
| 603 |
+
"outputs": [
|
| 604 |
+
{
|
| 605 |
+
"data": {
|
| 606 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 607 |
+
"model_id": "a9abf38ffb184ba4a4995450a4413bf2",
|
| 608 |
+
"version_major": 2,
|
| 609 |
+
"version_minor": 0
|
| 610 |
+
},
|
| 611 |
+
"text/plain": [
|
| 612 |
+
"Map (num_proc=16): 0%| | 0/160800 [00:00<?, ? examples/s]"
|
| 613 |
+
]
|
| 614 |
+
},
|
| 615 |
+
"metadata": {},
|
| 616 |
+
"output_type": "display_data"
|
| 617 |
+
},
|
| 618 |
+
{
|
| 619 |
+
"data": {
|
| 620 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 621 |
+
"model_id": "8e0af258d31742998176207df5cac540",
|
| 622 |
+
"version_major": 2,
|
| 623 |
+
"version_minor": 0
|
| 624 |
+
},
|
| 625 |
+
"text/plain": [
|
| 626 |
+
"Map (num_proc=16): 0%| | 0/8552 [00:00<?, ? examples/s]"
|
| 627 |
+
]
|
| 628 |
+
},
|
| 629 |
+
"metadata": {},
|
| 630 |
+
"output_type": "display_data"
|
| 631 |
+
}
|
| 632 |
+
],
|
| 633 |
+
"source": [
|
| 634 |
+
"tokds = ds.map(lambda x: tokenizer(x['prompt'] + x['chosen']), num_proc=16)"
|
| 635 |
+
]
|
| 636 |
+
},
|
| 637 |
+
{
|
| 638 |
+
"cell_type": "code",
|
| 639 |
+
"execution_count": 12,
|
| 640 |
+
"id": "2e72f7f3-b047-4eab-99a7-cc08d19efeba",
|
| 641 |
+
"metadata": {},
|
| 642 |
+
"outputs": [
|
| 643 |
+
{
|
| 644 |
+
"data": {
|
| 645 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 646 |
+
"model_id": "99c7615c05da46d6be5c68ecfba3e748",
|
| 647 |
+
"version_major": 2,
|
| 648 |
+
"version_minor": 0
|
| 649 |
+
},
|
| 650 |
+
"text/plain": [
|
| 651 |
+
"Map: 0%| | 0/160800 [00:00<?, ? examples/s]"
|
| 652 |
+
]
|
| 653 |
+
},
|
| 654 |
+
"metadata": {},
|
| 655 |
+
"output_type": "display_data"
|
| 656 |
+
},
|
| 657 |
+
{
|
| 658 |
+
"data": {
|
| 659 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 660 |
+
"model_id": "c9b61731ac524d8c8ad1a44e47bb12b2",
|
| 661 |
+
"version_major": 2,
|
| 662 |
+
"version_minor": 0
|
| 663 |
+
},
|
| 664 |
+
"text/plain": [
|
| 665 |
+
"Map: 0%| | 0/8552 [00:00<?, ? examples/s]"
|
| 666 |
+
]
|
| 667 |
+
},
|
| 668 |
+
"metadata": {},
|
| 669 |
+
"output_type": "display_data"
|
| 670 |
+
}
|
| 671 |
+
],
|
| 672 |
+
"source": [
|
| 673 |
+
"tokds = tokds.map(lambda x: {\"length\": len(x['input_ids'])})"
|
| 674 |
+
]
|
| 675 |
+
},
|
| 676 |
+
{
|
| 677 |
+
"cell_type": "code",
|
| 678 |
+
"execution_count": 16,
|
| 679 |
+
"id": "413e3eb3-ad2f-4f71-9f27-894c4942be4f",
|
| 680 |
+
"metadata": {},
|
| 681 |
+
"outputs": [],
|
| 682 |
+
"source": [
|
| 683 |
+
"import seaborn as sns"
|
| 684 |
+
]
|
| 685 |
+
},
|
| 686 |
+
{
|
| 687 |
+
"cell_type": "code",
|
| 688 |
+
"execution_count": 17,
|
| 689 |
+
"id": "a4c42a89-88dd-4f3d-82cb-1fd7ecb60815",
|
| 690 |
+
"metadata": {},
|
| 691 |
+
"outputs": [
|
| 692 |
+
{
|
| 693 |
+
"data": {
|
| 694 |
+
"text/plain": [
|
| 695 |
+
"<seaborn.axisgrid.FacetGrid at 0x7f8abec580d0>"
|
| 696 |
+
]
|
| 697 |
+
},
|
| 698 |
+
"execution_count": 17,
|
| 699 |
+
"metadata": {},
|
| 700 |
+
"output_type": "execute_result"
|
| 701 |
+
},
|
| 702 |
+
{
|
| 703 |
+
"data": {
|
| 704 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAAHpCAYAAACmzsSXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAz8UlEQVR4nO3deXhV1b3/8U+mE3IgI5gEymAAi6CgBRXTwSKkBEqrXrnPNZYKrYDFG6hAq5Rbq5b2Xvg5gAgRbCvEai3qfRRbsCCEQSwBMSUVUHkcsHgrCZWckzBlXr8/6NnNycAQTrJXct6v5zmPOXuv7Hz3Jp5P9t5rrxVhjDECAADWiXS7AAAA0DxCGgAASxHSAABYipAGAMBShDQAAJYipAEAsBQhDQCApQjp82CMUUVFhXikHADQngjp83D8+HElJibq+PHjbpcCAAgjhDQAAJYipAEAsBQhDQCApQhpAAAsRUgDAGApQhoAAEsR0gAAWIqQBgDAUoQ0AACWIqQBALAUIQ0AgKUIaQAALEVIAwBgKUIaAABLEdIAAFiKkAYAwFKENAAAliKkAQCwFCENAIClCOkOxhijsrIyGWPcLgUA0MYI6Q7G5/Mp59G18vl8bpcCAGhjhHQHFOONd7sEAEA7IKRdxuVrAEBLCGmXcfkaANASQtoCZ7t8zZk2AIQvQtpynGkDQPgipDsAOooBQHgipAEAsBQhDQCApQhpAAAsRUgDAGApQhoAAEsR0gAAWIqQ7uAY7AQAOi9CuoNjsBMA6LwI6U6AwU4AoHMipAEAsBQhDQCApQhpAAAsRUgDAGApQhoAAEsR0gAAWIqQBgDAUoQ0AACWIqQBALAUIQ0AgKUIaQAALEVIAwBgKUIaAABLEdKWYX5oAECANSG9aNEiRUREaPbs2c6yyspK5ebmqnv37urWrZsmTpyo0tLSoO87fPiwJkyYIK/Xq9TUVN17772qra0NarNt2zYNHz5csbGxGjhwoPLz89thj1qH+aEBAAFWhPSePXv01FNPadiwYUHL58yZoz/+8Y966aWXtH37dn322We69dZbnfV1dXWaMGGCqqurtXPnTj3zzDPKz8/XAw884LQ5dOiQJkyYoBtvvFHFxcWaPXu2pk2bpo0bN7bb/l0o5ocGAEgWhPSJEyc0adIk/frXv1ZycrKzvLy8XE8//bQWL16s0aNHa8SIEVq9erV27typXbt2SZJef/11vfvuu3ruued09dVXa/z48frFL36hvLw8VVdXS5JWrlypjIwMPfbYYxo8eLBmzpypf//3f9eSJUtarKmqqkoVFRVBLwAA2pvrIZ2bm6sJEyYoKysraHlRUZFqamqCll9++eXq27evCgsLJUmFhYUaOnSo0tLSnDbZ2dmqqKjQgQMHnDaNt52dne1sozkLFy5UYmKi8+rTp89F7ycAABfK1ZBes2aN/vKXv2jhwoVN1pWUlMjj8SgpKSloeVpamkpKSpw2DQM6sD6w7mxtKioqdPr06Wbrmj9/vsrLy53Xp59+2qr9AwDgYkS79YM//fRT3XPPPdq0aZO6dOniVhnNio2NVWxsrNtlAADCnGtn0kVFRTp69KiGDx+u6OhoRUdHa/v27XriiScUHR2ttLQ0VVdXy+/3B31faWmp0tPTJUnp6elNensH3p+rTUJCguLi4tpo7wAAuHiuhfSYMWO0b98+FRcXO69rrrlGkyZNcr6OiYlRQUGB8z0HDx7U4cOHlZmZKUnKzMzUvn37dPToUafNpk2blJCQoCFDhjhtGm4j0CawDQAAbOXa5e74+HhdeeWVQcu6du2q7t27O8unTp2quXPnKiUlRQkJCZo1a5YyMzN1/fXXS5LGjh2rIUOG6I477tDDDz+skpIS3X///crNzXUuV8+YMUPLly/XfffdpzvvvFNbtmzRiy++qPXr17fvDgMAcIFcC+nzsWTJEkVGRmrixImqqqpSdna2nnzySWd9VFSU1q1bp7vvvluZmZnq2rWrpkyZogULFjhtMjIytH79es2ZM0dLly5V79699Zvf/EbZ2dlu7BIAAOfNqpDetm1b0PsuXbooLy9PeXl5LX5Pv3799Nprr511u6NGjdLevXtDUSIAAO3G9eekAQBA8whpAAAsRUh3IMYYJt4AgDBCSHcgPp9P05avV12jWb4AAJ0TId3BRMcxQxYAhAurenfj/DS87G2McbkaAEBbIaQ7oJrKk8p9do+iY6K0NGe42+UAANoIl7s7KI83XjHehCbLjTEqKyvjDBsAOgFCupPx+XzKeXQtvcABoBMgpDuhGC+dywCgMyCkAQCwFCENAIClCGkAACxFSAMAYClCGgAASxHSAABYihHHOgBmvwKA8ERIdwA1p88MA1pfc1p1dcyABQDhgsvdHYTHG68YZsACgLBCSAMAYClCGgAASxHSHZgxRn6/3+0yAABthJDuwGpOndCc/B2qq6UzGQB0RoR0Bxft7ep2CQCANkJIAwBgKUIaAABLMZiJhRqOMGaMcbkaAIBbCGkLBUYYi4qO1ILxA9wuBwDgEi53W8rjjZcUeab3NkOBAkBYIqQtR+9tAAhfhDQAAJYipAEAsBQdxzoBeoMDQOdESHcCNZVneoNHx0Rpac7woHWBAE9OTlZERIRLFQIAWoPL3RYIBOmxY8dUVlbWqm14vPGK8SY0We7z+ZTz6FrnTBsA0HFwJm2BwHPR9TWnVVlRHvIe3THe+JBuDwDQPghpS3i88aqrjlYtM1oBAP6Jy90AAFiKkAYAwFKENAAAliKkAQCwFCHdiRhj5Pf73S4DABAihHQnUnPqxJlZs+ghDgCdAiHdyTBrFgB0HoQ0AACWIqQBALAUIQ0AgKUIaQAALEVIAwBgKUIaAABLEdIAAFiKkAYAwFKENAAAliKkAQCwFCENAIClCGkAACxFSAMAYClCGgAASxHSAABYKtrtAhB6xhj5fD7n6+bWJScnKyIiwo3yAADniTPpTqim8qRyn92jySsK5Pf7g9b5fD7lPLrWCXEAgL04k3ZRwzPeUPN44xUV0/w/b4w3vk1+JgAgtDiTdpHP59O05etVV1frdikAAAsR0i6LjuOsFgDQPEIaAABLEdIAAFiKkAYAwFKENAAAliKkAQCwFCENAIClCOlOzBjTZMQxAEDHQUh3YjWnTmhO/g7V1TJYCgB0RIR0Jxft7ep2CQCAViKkAQCwFCENAIClCGkAACxFSAMAYClCGgAASxHSAABYipAGAMBShDQAAJYipAEAsBQhDQCApQhpAAAsRUgDAGApQjrMGWNUVlYmY4zbpQAAGiGkw5zP51POo2vl8/ncLgUA0IirIb1ixQoNGzZMCQkJSkhIUGZmpv70pz856ysrK5Wbm6vu3burW7dumjhxokpLS4O2cfjwYU2YMEFer1epqam69957Vdto/uRt27Zp+PDhio2N1cCBA5Wfn98eu9dhxHjj3S4BANAMV0O6d+/eWrRokYqKivT2229r9OjRuvnmm3XgwAFJ0pw5c/THP/5RL730krZv367PPvtMt956q/P9dXV1mjBhgqqrq7Vz504988wzys/P1wMPPOC0OXTokCZMmKAbb7xRxcXFmj17tqZNm6aNGze2+/4CAHAhot384d/+9reD3v/3f/+3VqxYoV27dql37956+umn9fzzz2v06NGSpNWrV2vw4MHatWuXrr/+er3++ut69913tXnzZqWlpenqq6/WL37xC82bN08PPfSQPB6PVq5cqYyMDD322GOSpMGDB+vNN9/UkiVLlJ2d3WxdVVVVqqqqct5XVFS00REAAKBl1tyTrqur05o1a3Ty5EllZmaqqKhINTU1ysrKctpcfvnl6tu3rwoLCyVJhYWFGjp0qNLS0pw22dnZqqiocM7GCwsLg7YRaBPYRnMWLlyoxMRE59WnT59Q7ioAAOfF9ZDet2+funXrptjYWM2YMUOvvPKKhgwZopKSEnk8HiUlJQW1T0tLU0lJiSSppKQkKKAD6wPrztamoqJCp0+fbram+fPnq7y83Hl9+umnodhVAAAuiKuXuyVp0KBBKi4uVnl5uf73f/9XU6ZM0fbt212tKTY2VrGxsa7WAACA6yHt8Xg0cOBASdKIESO0Z88eLV26VLfddpuqq6vl9/uDzqZLS0uVnp4uSUpPT9dbb70VtL1A7++GbRr3CC8tLVVCQoLi4uLaarcAALhorl/ubqy+vl5VVVUaMWKEYmJiVFBQ4Kw7ePCgDh8+rMzMTElSZmam9u3bp6NHjzptNm3apISEBA0ZMsRp03AbgTaBbQAAYCtXz6Tnz5+v8ePHq2/fvjp+/Lief/55bdu2TRs3blRiYqKmTp2quXPnKiUlRQkJCZo1a5YyMzN1/fXXS5LGjh2rIUOG6I477tDDDz+skpIS3X///crNzXUuV8+YMUPLly/XfffdpzvvvFNbtmzRiy++qPXr17u56wAAnJOrIX306FFNnjxZR44cUWJiooYNG6aNGzfqG9/4hiRpyZIlioyM1MSJE1VVVaXs7Gw9+eSTzvdHRUVp3bp1uvvuu5WZmamuXbtqypQpWrBggdMmIyND69ev15w5c7R06VL17t1bv/nNb1p8/AoAAFu4GtJPP/30Wdd36dJFeXl5ysvLa7FNv3799Nprr511O6NGjdLevXtbVSMAAG6x7p40AAA4w/Xe3Wh7xhj5fD7nvwCAjoGQDgM1lSeV++we1decVmVFubzd0879TQAA1xHSYcLjjVdddXSTGcIAAPbinjQAAJYipAEAsBQhDQCApQhpAAAsRUgDAGApQhoXxBijsrIyGWPcLgUAOj1CGhfE5/Mp59G1DIoCAO2AkMYFi/HGu10CAIQFQhoAAEsR0gAAWIphQcNQw4k26AAGAPYipMNQYMKN6JgoLc0Z7nY5AIAWENJhyuONV1QM//wAYDPuSQMAYClCGgAASxHSAABYipAGAMBShDSCMDY3ANiDkEYQxuYGAHsQ0miCsbkBwA6ENAAAliKkAQCwFCENAIClCGkAACxFSAMAYClCGgAASxHSYcwYI7/f73YZAIAWMFdhGKs5dUJz8t9XXEqqM3gJI40BgD0I6TAX7e2qmsqTyn12j6JjorQ0Z7jbJQEA/omQhiTJ441XVAy/DgBgE+5JAwBgKUIaAABLEdIAAFiKkAYAwFKENAAAliKkAQCwFCENAIClCGkAACxFSAMAYClCGgAASxHSAABYipAGAMBSrQrp/v3769ixY02W+/1+9e/f/6KLgp2MMc6UlgCAtteqkP7kk09UV1fXZHlVVZX+/ve/X3RRsJPP59O05etVV1vrdikAEBYuaG7CP/zhD87XGzduVGJiovO+rq5OBQUFuvTSS0NWHOwTHRfvdgkAEDYuKKRvueUWSVJERISmTJkStC4mJkaXXnqpHnvssZAVh/ZljJHf73e7DADAP11QSNfX10uSMjIytGfPHvXo0aNNioI7ak6d0Jz89+XtnuZ2KQAAXWBIBxw6dCjUdcAS0d6ubpcAAPinVoW0JBUUFKigoEBHjx51zrADVq1addGFwQ6BHt3JyclulwIAYadVvbt//vOfa+zYsSooKNDnn38un88X9ELn4fP5lPPoWv5dAcAFrTqTXrlypfLz83XHHXeEuh5YKMZLj24AcEOrQrq6ulpf/vKXQ10LLNFw0BJjjMvVAED4atXl7mnTpun5558PdS2wRE3lSeU+u0eTVxTwSBYAuKhVZ9KVlZX61a9+pc2bN2vYsGGKiYkJWr948eKQFAf3eLzxioppdb9CAEAItOpT+J133tHVV18tSdq/f3/QuoiIiIsuCgAAtDKkt27dGuo6AABAI0xVCQCApVp1Jn3jjTee9bL2li1bWl0QAAA4o1UhHbgfHVBTU6Pi4mLt37+/ycQbAACgdVoV0kuWLGl2+UMPPaQTJ05cVEEAAOCMkN6T/u53v8u43QAAhEhIQ7qwsFBdunQJ5SYBAAhbrbrcfeuttwa9N8boyJEjevvtt/Wzn/0sJIUBABDuWhXSiYmJQe8jIyM1aNAgLViwQGPHjg1JYQAAhLtWhfTq1atDXQcAAGjkogZnLioq0nvvvSdJuuKKK/SlL30pJEUBAIBWhvTRo0eVk5Ojbdu2KSkpSZLk9/t14403as2aNbrkkktCWSMAAGGpVb27Z82apePHj+vAgQMqKytTWVmZ9u/fr4qKCv3whz8MdY0AAISlVp1Jb9iwQZs3b9bgwYOdZUOGDFFeXh4dxwAACJFWnUnX19c3mUNakmJiYlRfX3/RRQEAgFaG9OjRo3XPPffos88+c5b9/e9/15w5czRmzJiQFQcAQDhrVUgvX75cFRUVuvTSSzVgwAANGDBAGRkZqqio0LJly0JdIwAAYalV96T79Omjv/zlL9q8ebPef/99SdLgwYOVlZUV0uIAAAhnF3QmvWXLFg0ZMkQVFRWKiIjQN77xDc2aNUuzZs3StddeqyuuuEI7duxoq1oBAAgrFxTSjz/+uKZPn66EhIQm6xITE/WDH/xAixcvDllxAACEswsK6b/+9a8aN25ci+vHjh2roqKiiy4KdjDGyO/3u10GAIStCwrp0tLSZh+9CoiOjtY//vGPiy4Kdqg5dUJz8neorrbW7VIAICxdUEh/4Qtf0P79+1tc/84776hnz54XXRTsEe3t6nYJABC2Liikv/nNb+pnP/uZKisrm6w7ffq0HnzwQX3rW98KWXEAAISzC3oE6/7779fLL7+sL37xi5o5c6YGDRokSXr//feVl5enuro6/fSnP22TQgEACDcXFNJpaWnauXOn7r77bs2fP1/GGElSRESEsrOzlZeXp7S0tDYpFO4xxsjn87ldBgCEnQsezKRfv3567bXX5PP59OGHH8oYo8suu0zJycltUR8sUFN5UrnP7lF9zWnV1dUqyu2CACBMtGrEMUlKTk7WtddeG8paYDGPN1511dGqPc4ZNQC0l1aN3R0qCxcu1LXXXqv4+Hilpqbqlltu0cGDB4PaVFZWKjc3V927d1e3bt00ceJElZaWBrU5fPiwJkyYIK/Xq9TUVN17772qbfTY0LZt2zR8+HDFxsZq4MCBys/Pb+vdAwDgorga0tu3b1dubq527dqlTZs2qaamRmPHjtXJkyedNnPmzNEf//hHvfTSS9q+fbs+++wz3Xrrrc76uro6TZgwQdXV1dq5c6eeeeYZ5efn64EHHnDaHDp0SBMmTNCNN96o4uJizZ49W9OmTdPGjRvbdX8BALgQrb7cHQobNmwIep+fn6/U1FQVFRXphhtuUHl5uZ5++mk9//zzGj16tCRp9erVGjx4sHbt2qXrr79er7/+ut59911t3rxZaWlpuvrqq/WLX/xC8+bN00MPPSSPx6OVK1cqIyNDjz32mKQzk4G8+eabWrJkibKzs5vUVVVVpaqqKud9RUVFGx4FAACa5+qZdGPl5eWSpJSUFElSUVGRampqgmbXuvzyy9W3b18VFhZKkgoLCzV06NCgXuXZ2dmqqKjQgQMHnDaNZ+jKzs52ttHYwoULlZiY6Lz69OkTup0EAOA8WRPS9fX1mj17tr7yla/oyiuvlCSVlJTI4/EoKSkpqG1aWppKSkqcNo0f+wq8P1ebiooKnT59ukkt8+fPV3l5ufP69NNPQ7KPAABcCFcvdzeUm5ur/fv3680333S7FMXGxio2NtbtMqzV8Lnp5ORkRUREuFwRAHROVpxJz5w5U+vWrdPWrVvVu3dvZ3l6erqqq6ubzMRUWlqq9PR0p03j3t6B9+dqk5CQoLi4uFDvTqcXeG568ooCBjkBgDbkakgbYzRz5ky98sor2rJlizIyMoLWjxgxQjExMSooKHCWHTx4UIcPH1ZmZqYkKTMzU/v27dPRo0edNps2bVJCQoKGDBnitGm4jUCbwDZw4TzeeMV4m84rDgAIHVcvd+fm5ur555/Xq6++qvj4eOcecmJiouLi4pSYmKipU6dq7ty5SklJUUJCgmbNmqXMzExdf/31ks7MYT1kyBDdcccdevjhh1VSUqL7779fubm5ziXrGTNmaPny5brvvvt05513asuWLXrxxRe1fv161/YdAIBzcfVMesWKFSovL9eoUaPUs2dP5/XCCy84bZYsWaJvfetbmjhxom644Qalp6fr5ZdfdtZHRUVp3bp1ioqKUmZmpr773e9q8uTJWrBggdMmIyND69ev16ZNm3TVVVfpscce029+85tmH78CAMAWrp5JByboOJsuXbooLy9PeXl5LbYJjCd+NqNGjdLevXsvuEYAANxiRccxdFzGGJWVlZ3XH1wAgAtDSOOi+P1+5Ty6ll7eANAGCGlctBhvvNslAECnREgDAGApQhoAAEsR0gAAWIqQBgDAUoQ0AACWIqQBALAUIQ0AgKUIaQAALEVIAwBgKUIaAABLEdIAAFiKkAYAwFKENAAAliKk0WrGGPn9frfLAIBOi5BGq9WcOqE5+TtUV1vrdikA0CkR0rgo0d6ubpcAAJ0WIQ0AgKUIaQAALEVII6SMMSorK5Mxxu1SAKDDI6QRUj6fTzmPrpXP53O7FADo8AhphFyMN97tEgCgUyCkAQCwFCENAIClCGkAACxFSAMAYClCGgAAS0W7XQA6PmOM88gVz0cDQOgQ0rhoNZUnlfvsHkXHRGlpznC3ywGAToOQRkh4vPGKiuHXCQBCiXvSAABYipAGAMBShDQAAJYipAEAsBQhDQCApQhphIwxRn6/3+0yAKDTIKQRMjWnTmhO/g7V1da6XQoAdAqENEIq2tvV7RIAoNMgpAEAsBQhjTZljFFZWRljegNAKxDSaFM+n085j651JuAAAJw/QhptLsYb73YJANAhEdIAAFiKkAYAwFKENAAAliKkAQCwFCENAIClCGkAACwV7XYB6HyMMc5z0QxiAgCtR0gj5GoqTyr32T2KjonS0pzhbpcDAB0WIY024fHGKyqGXy8AuBjck0a7YixvADh/hDTaFWN5A8D543qkCwIdq8I1qBjLGwDODyHtAp/Pp8krClR96oTq6mrdLgcAYCkud7skxpugmLjOfUZpjJHf73e7DADosAhptJmaUyc0J3+H6mq5WgAArUFIo01Fe7u6XQIAdFiENAAAliKkAQCwFCENAIClCGkAACxFSAMAYClCGgAASxHScBUTbgBAywhpuIoJNwCgZYQ0XMeEGwDQPEIaAABLMQsW2lxgas7A1wCA80NIo83VVJ5U7rN7FB0TpaU5w90uBwA6DEIa7cLjjVdkdBRTVwLABeCeNNoNU1cCwIUhpNGumLoSAM4fIQ0AgKUIaQAALEVIAwBgKUIaAABLEdIAAFiKkAYAwFIMZoJ2xzChAHB+CGm0O4YJBYDzw+VuuMLjjVeMN6HJcmOMysrKOMMGABHSsIzP51POo2udy+EAEM4IabjGGNPshBsx3vj2LwYALERIwzVMuAEAZ+dqSL/xxhv69re/rV69eikiIkJr164NWm+M0QMPPKCePXsqLi5OWVlZ+uCDD4LalJWVadKkSUpISFBSUpKmTp2qEydOBLV555139LWvfU1dunRRnz599PDDD7f1ruE8MeEGALTM1ZA+efKkrrrqKuXl5TW7/uGHH9YTTzyhlStXavfu3eratauys7NVWVnptJk0aZIOHDigTZs2ad26dXrjjTd01113OesrKio0duxY9evXT0VFRXrkkUf00EMP6Ve/+lWb7x8AABfD1Uewxo8fr/Hjxze7zhijxx9/XPfff79uvvlmSdJvf/tbpaWlae3atcrJydF7772nDRs2aM+ePbrmmmskScuWLdM3v/lNPfroo+rVq5d+97vfqbq6WqtWrZLH49EVV1yh4uJiLV68OCjMG6qqqlJVVZXzvqKiIsR7DgDAuVl7T/rQoUMqKSlRVlaWsywxMVEjR45UYWGhJKmwsFBJSUlOQEtSVlaWIiMjtXv3bqfNDTfcII/H47TJzs7WwYMHW+xBvHDhQiUmJjqvPn36tMUuAgBwVtaGdElJiSQpLS0taHlaWpqzrqSkRKmpqUHro6OjlZKSEtSmuW00/BmNzZ8/X+Xl5c7r008/vfgdAgDgAjHiWDNiY2MVGxvrdhkAgDBn7Zl0enq6JKm0tDRoeWlpqbMuPT1dR48eDVpfW1ursrKyoDbNbaPhz4C7AmN5M9IYAASzNqQzMjKUnp6ugoICZ1lFRYV2796tzMxMSVJmZqb8fr+KioqcNlu2bFF9fb1GjhzptHnjjTdUU1PjtNm0aZMGDRqk5OTkdtobnE1gLO/JKwqaHdwEAMKVqyF94sQJFRcXq7i4WNKZzmLFxcU6fPiwIiIiNHv2bP3yl7/UH/7wB+3bt0+TJ09Wr169dMstt0iSBg8erHHjxmn69Ol666239Oc//1kzZ85UTk6OevXqJUn6zne+I4/Ho6lTp+rAgQN64YUXtHTpUs2dO9elvUZzWhrLGwDCmav3pN9++23deOONzvtAcE6ZMkX5+fm67777dPLkSd11113y+/366le/qg0bNqhLly7O9/zud7/TzJkzNWbMGEVGRmrixIl64oknnPWJiYl6/fXXlZubqxEjRqhHjx564IEHWnz8CgAAW7ga0qNGjTrrPciIiAgtWLBACxYsaLFNSkqKnn/++bP+nGHDhmnHjh2trhMAADdYe08aAIBwR0jDGi3NigUA4YqQhjWYFQsAghHSsAqzYgHAvxDSsJoxhkFOAIQtQhrWaTgCWVlZmXIeXdviZCgA0JkxdjesExiBLDomSktzhivGG+92SQDgCkIaVvJ44xUVw68ngPDG5W4AACxFSAMAYClCGtZicBMA4Y6QhrUY3ARAuCOkYTUGNwEQzghpAAAsRUgDAGApQhoAAEsR0uhQGMsbQDghpNGh+Hw+xvIGEDYYdxHWC0y4EfgvY3kDCBeENKwXmHCjvua0KivK5e2e5nZJANAuCGl0CB5vvOqqo1XLwCYAwgj3pAEAsBQhDQCApQhpAAAsRUgDAGApQhoAAEsR0gAAWIpHsNDhNBzcxBijiIgIpaSkKCIiwu3SACCkCGl0OI0HN4mJ66qXfjJRKSkpbpcGACFFSKNDaji4SUxcN7fLAYA2wT1pAAAsRUijU2EqSwCdCSGNToWpLAF0JtyTRocX6O0d+JqpLAF0FoQ0OrxAb+/omCgtzRnudjkAEDKENDoFjzdeUTH8OgPoXLgnjU7DGCO/3+92GQAQMoQ0Oo2aUyc0J3+H6mpr3S4FAEKCkEanEu3t6nYJABAyhDQAAJYipAEAsBQhDQCApQhpdGqNhwll2FAAHQkhjU6t8TChDBsKoCNh9Ad0OucaJjQ6rpuzPjk5WREREe1eIwCcD0IanU5Lw4QGwrvm9Jn1UdGRWpozXMnJyUpJSSGsAViHy93olDzeeMV4E4KW+Xw+TVu+XnV1tfJ44yVF6s6l6/Qf/+9lLn8DsBIhjU6ruWFCo+MaXfr2dlWMt1s7VgUA54/L3ei0zgwT+r7iUlI5UwbQIRHS6NSivV2de9T1NadVV8e43gA6Di53Iyx4vPGKaXSpGwBsR0gDAGApQhoAAEsR0gAAWIqQBgDAUoQ0AACW4hEshL3AcKGBmbEYIhSALQhphL2Gz1HXVtfo1zPGqH///gQ1ANdxuRtQg+eoIyN011NbGKEMgBUIaaCRhmN5G2NUVlbmXAoHgPZESANn4fP5lPPoWs6sAbiCkAbOIcbLcKIA3EHHMaCRQG/vwNcA4BZCGmgk0Ns7OiZKS3OGu10OgDBGSAPN8HjjFRXD/x4A3MU9aQAALEVIAy0wxsjv9zdZxiNZANoLIQ20oObUCc3J36Hamhr5fD6VlZWprKyMR7IAtBtuugFnEe3t6nQki4qO1ILxA3gkC0C74UwaOA8eb7ykSM3J36G62lpnOZe/AbQlQhq4ANHerkHvGZEMQFsipNtZw4Ey0LEF/i25/A2grRDS7czn82na8vWqq6k9d2NYKRDOH3/8saYtXx/UsYzL3gBCiY5jLoiO48yrI2s4/3SEJy5ohLJnZoxWRESEkpOTmY8awEXjTBpoBWf+6Qbvo+Pi9cknnwTdo6ZjGYCLQUgDIRJ4rjrSE+cso2MZgIvB5W4ghBr3/pak6LhuTkhzGRzAhSCkgRALdCwL/LfmdMv3rANtCG8AzSGkgRBr2LGssqJc0d6uivPGKzI6Sp988ol+8r/FWjltlJKTk2WM0e2Pvao1P75FKSkpbpcOwDKENNAGPN541VVHq7bB6GRn7lm/r2hv1/MaZpSzbAB0HAPaUeCedcNhRgPPWR87dkyff/65Pv/8cx07dkwff/yxch5d60zsUVZWpvr6+qDe4vQeBzo3zqQBFzWcwCNweVySvN3TzzyHHdNFn3zyiR7c8LGMMVowfoBzuTwpKUk+n0//ueoNLpcDnRQhDVig8eXxwPvTx32ak79DSX0uU131ac3J3+FcLg+EelxKqtN7PCkpSX6/n0vkQCfB5W7Acg0f62p4uTwmLj7oTHzyigIdOnRItz3yij7++GMugwOdACENdAKBEc/8fr8UEancZ/fojic36+OPPw4Kau5hAx0LIQ10EoERz+rqap2OadNXFuijjz7SsWPHnM5nDc+0G3dEA2AX7kkDnUiTEc8iI3Tn0nXydk93HvkKnGkH3jfsiGaMce5lB4K74b3t5OTkM2frYvQ0oD2EVUjn5eXpkUceUUlJia666iotW7ZM1113ndtlAW0q2tv1nx3R/tXxLK7R+4Yd0QI9yxv3NK+trtEjOSOcnuZP3D5CGRkZTmgHepsHBAI/JSWl1WHecP51/ihAOAqbkH7hhRc0d+5crVy5UiNHjtTjjz+u7OxsHTx4UKmpqW6XB7SLxmfaDTuiBXqXt9TTvLY2uKf59JUFQaG9YPwA/fi5Pys2MfVfo6118erXM8Y4Z+mSWjxTb+693+/X7Bf2yhijpTnDlZSUFLQ+8EeAJOeyfXNn/saYoO1HRESc9Y8K6czkKIHe8oHvDcUfHMnJyU69DbfZ3OA1Df9Iadxz/1zt+aOmcwibkF68eLGmT5+u73//+5KklStXav369Vq1apV+8pOfBLWtqqpSVVWV8768/MwZRUVFxUXXUVFRoUr/P2SMUX1NpSqPn9lmZGQU73lvxftztT3lK3Xez1i2Vok9M1RfU6kZy/YpJrarorqcUn1NpWqrz7zufGL9mfanjkuSvImXXND7wPZv/+UzTdbHdOmqJ2eMkyTNWLZWdXV1zvq6+notvD1TP//DftWcPhm0/ajoKD1405Wa99utiu2W0uz2Zv3qdf3ytpHO99fV1+vJGeOUlJSk1vD7/Zr1q9e17K6xTr2RMV2cbTZcH/gZfr9fc5/9syTpwZuu1P0v7HbWn6v94ju+0upacXahHJMgPj7+7H9MmTBQVVVloqKizCuvvBK0fPLkyeamm25q0v7BBx80knjx4sWLF682fZWXl581v8LiTPrzzz9XXV2d0tLSgpanpaXp/fffb9J+/vz5mjt3rvM+0AO2e/furb58VFFRoT59+ujTTz9VQkJCq7bR3jpizVLHrLsj1ixRd3vqiDVLHbPu9qw5Pr75sfsDwiKkL1RsbKxiY2ODloXqslFCQkKH+UUN6Ig1Sx2z7o5Ys0Td7akj1ix1zLptqDksnpPu0aOHoqKiVFpaGrS8tLRU6enpLlUFAMDZhUVIezwejRgxQgUFBc6y+vp6FRQUKDMz08XKAABoWdhc7p47d66mTJmia665Rtddd50ef/xxnTx50unt3dZiY2P14IMPNrmMbrOOWLPUMevuiDVL1N2eOmLNUses26aaI4wJn/EAly9f7gxmcvXVV+uJJ57QyJEj3S4LAIBmhVVIAwDQkYTFPWkAADoiQhoAAEsR0gAAWIqQBgDAUoR0O8jLy9Oll16qLl26aOTIkXrrrbdcq2XhwoW69tprFR8fr9TUVN1yyy06ePBgUJtRo0Y5MwUFXjNmzAhqc/jwYU2YMEFer1epqam69957nVmT2sJDDz3UpKbLL7/cWV9ZWanc3Fx1795d3bp108SJE5sMXtPeNV966aVNao6IiFBubq4ke47zG2+8oW9/+9vq1auXIiIitHbt2qD1xhg98MAD6tmzp+Li4pSVlaUPPvggqE1ZWZkmTZqkhIQEJSUlaerUqTpx4kRQm3feeUdf+9rX1KVLF/Xp00cPP/xwm9VdU1OjefPmaejQoeratat69eqlyZMn67PPPgvaRnP/RosWLWqzus91rL/3ve81qWfcuHFBbWw71pKa/T2PiIjQI4884rRp72N9Pp91ofrc2LZtm4YPH67Y2FgNHDhQ+fn5ra67iRDNYYEWrFmzxng8HrNq1Spz4MABM336dJOUlGRKS0tdqSc7O9usXr3a7N+/3xQXF5tvfvObpm/fvubEiRNOm69//etm+vTp5siRI86r4SDwtbW15sorrzRZWVlm79695rXXXjM9evQw8+fPb7O6H3zwQXPFFVcE1fSPf/zDWT9jxgzTp08fU1BQYN5++21z/fXXmy9/+cuu1nz06NGgejdt2mQkma1btxpj7DnOr732mvnpT39qXn75ZSOpyUQ0ixYtMomJiWbt2rXmr3/9q7nppptMRkaGOX36tNNm3Lhx5qqrrjK7du0yO3bsMAMHDjS33367s768vNykpaWZSZMmmf3795vf//73Ji4uzjz11FNtUrff7zdZWVnmhRdeMO+//74pLCw01113nRkxYkTQNvr162cWLFgQ9G/Q8P+FUNd9rmM9ZcoUM27cuKB6ysrKgtrYdqyNMUH1HjlyxKxatcpERESYjz76yGnT3sf6fD7rQvG58fHHHxuv12vmzp1r3n33XbNs2TITFRVlNmzY0Kq6GyOk29h1111ncnNznfd1dXWmV69eZuHChS5W9S9Hjx41ksz27dudZV//+tfNPffc0+L3vPbaayYyMtKUlJQ4y1asWGESEhJMVVVVm9T54IMPmquuuqrZdX6/38TExJiXXnrJWfbee+8ZSaawsNC1mhu75557zIABA0x9fb0xxs7j3PgDuL6+3qSnp5tHHnnEWeb3+01sbKz5/e9/b4wx5t133zWSzJ49e5w2f/rTn0xERIT5+9//bowx5sknnzTJyclBdc+bN88MGjSoTepuzltvvWUkmb/97W/Osn79+pklS5a0+D1tWXdLIX3zzTe3+D0d5VjffPPNZvTo0UHL3DzWxjT9rAvV58Z9991nrrjiiqCfddttt5ns7OyQ1M3l7jZUXV2toqIiZWVlOcsiIyOVlZWlwsJCFyv7l8Bc2Y3nR/3d736nHj166Morr9T8+fN16tQpZ11hYaGGDh0aNKtYdna2KioqdODAgTar9YMPPlCvXr3Uv39/TZo0SYcPH5YkFRUVqaamJug4X3755erbt69znN2qOaC6ulrPPfec7rzzzqCZ1Gw8zg0dOnRIJSUlQcc2MTFRI0eODDq2SUlJuuaaa5w2WVlZioyM1O7du502N9xwgzweT9C+HDx4UD6fr132pby8XBEREU0my1m0aJG6d++uL33pS3rkkUeCLmW6Ufe2bduUmpqqQYMG6e6779axY8eC6rH9WJeWlmr9+vWaOnVqk3VuHuvGn3Wh+twoLCwM2kagTag+48NmWFA3XOgUme2tvr5es2fP1le+8hVdeeWVzvLvfOc76tevn3r16qV33nlH8+bN08GDB/Xyyy9LkkpKSprdp8C6tjBy5Ejl5+dr0KBBOnLkiH7+85/ra1/7mvbv36+SkhJ5PJ4mH75paWlOPW7U3NDatWvl9/v1ve99z1lm43FuLPBzmquj4bFNTU0NWh8dHa2UlJSgNhkZGU22EViXnJzcJvUHVFZWat68ebr99tuDZjX64Q9/qOHDhyslJUU7d+7U/PnzdeTIES1evNiVuseNG6dbb71VGRkZ+uijj/Rf//VfGj9+vAoLCxUVFdUhjvUzzzyj+Ph43XrrrUHL3TzWzX3Whepzo6U2FRUVOn36tOLi4lpdt0RIh7Xc3Fzt379fb775ZtDyu+66y/l66NCh6tmzp8aMGaOPPvpIAwYMaO8yJUnjx493vh42bJhGjhypfv366cUXX7zo/wnaw9NPP63x48erV69ezjIbj3NnVFNTo//4j/+QMUYrVqwIWtdw3vhhw4bJ4/HoBz/4gRYuXOjKuM05OTnO10OHDtWwYcM0YMAAbdu2TWPGjGn3elpj1apVmjRpkrp06RK03M1j3dJnXUfA5e42ZPMUmTNnztS6deu0detW9e7d+6xtA+Obf/jhh5Kk9PT0ZvcpsK49JCUl6Ytf/KI+/PBDpaenq7q6Wn6/v0lNgXrcrPlvf/ubNm/erGnTpp21nY3HOfBzzvY7nJ6erqNHjwatr62tVVlZmevHPxDQf/vb37Rp06Zzzg08cuRI1dbW6pNPPnFqc/PfoH///urRo0fQ74Stx1qSduzYoYMHD57zd11qv2Pd0mddqD43WmqTkJAQkhMIQroN2ThFpjFGM2fO1CuvvKItW7Y0ubzUnOLiYklSz549JUmZmZnat29f0IdF4ANwyJAhbVJ3YydOnNBHH32knj17asSIEYqJiQk6zgcPHtThw4ed4+xmzatXr1ZqaqomTJhw1nY2HueMjAylp6cHHduKigrt3r076Nj6/X4VFRU5bbZs2aL6+nrnD4/MzEy98cYbqqmpCdqXQYMGtdnl10BAf/DBB9q8ebO6d+9+zu8pLi5WZGSkc0nZjbob+r//+z8dO3Ys6HfCxmMd8PTTT2vEiBG66qqrztm2rY/1uT7rQvW5kZmZGbSNQJuQfcaHpPsZWrRmzRoTGxtr8vPzzbvvvmvuuusuk5SUFNRbsD3dfffdJjEx0Wzbti3oUYhTp04ZY4z58MMPzYIFC8zbb79tDh06ZF599VXTv39/c8MNNzjbCDyWMHbsWFNcXGw2bNhgLrnkkjZ9nOlHP/qR2bZtmzl06JD585//bLKyskyPHj3M0aNHjTFnHqXo27ev2bJli3n77bdNZmamyczMdLVmY8705u/bt6+ZN29e0HKbjvPx48fN3r17zd69e40ks3jxYrN3716nF/SiRYtMUlKSefXVV80777xjbr755mYfwfrSl75kdu/ebd58801z2WWXBT0W5Pf7TVpamrnjjjvM/v37zZo1a4zX672ox4LOVnd1dbW56aabTO/evU1xcXHQ73qgV+7OnTvNkiVLTHFxsfnoo4/Mc889Zy655BIzefLkNqv7bDUfP37c/PjHPzaFhYXm0KFDZvPmzWb48OHmsssuM5WVlc42bDvWAeXl5cbr9ZoVK1Y0+X43jvW5PuuMCc3nRuARrHvvvde89957Ji8vj0ewOpply5aZvn37Go/HY6677jqza9cu12qR1Oxr9erVxhhjDh8+bG644QaTkpJiYmNjzcCBA829994b9PyuMcZ88sknZvz48SYuLs706NHD/OhHPzI1NTVtVvdtt91mevbsaTwej/nCF75gbrvtNvPhhx8660+fPm3+8z//0yQnJxuv12v+7d/+zRw5csTVmo0xZuPGjUaSOXjwYNBym47z1q1bm/2dmDJlijHmzGNYP/vZz0xaWpqJjY01Y8aMabI/x44dM7fffrvp1q2bSUhIMN///vfN8ePHg9r89a9/NV/96ldNbGys+cIXvmAWLVrUZnUfOnSoxd/1wHPqRUVFZuTIkSYxMdF06dLFDB482PzP//xPUCCGuu6z1Xzq1CkzduxYc8kll5iYmBjTr18/M3369CZ/0Nt2rAOeeuopExcXZ/x+f5Pvd+NYn+uzzpjQfW5s3brVXH311cbj8Zj+/fsH/YyLxVSVAABYinvSAABYipAGAMBShDQAAJYipAEAsBQhDQCApQhpAAAsRUgDAGApQhoAAEsR0gAAWIqQBgDAUoQ0AACW+v/XfUaUz6/OiAAAAABJRU5ErkJggg==",
|
| 705 |
+
"text/plain": [
|
| 706 |
+
"<Figure size 500x500 with 1 Axes>"
|
| 707 |
+
]
|
| 708 |
+
},
|
| 709 |
+
"metadata": {},
|
| 710 |
+
"output_type": "display_data"
|
| 711 |
+
}
|
| 712 |
+
],
|
| 713 |
+
"source": [
|
| 714 |
+
"sns.displot(tokds[\"train\"][\"length\"])"
|
| 715 |
+
]
|
| 716 |
+
},
|
| 717 |
+
{
|
| 718 |
+
"cell_type": "code",
|
| 719 |
+
"execution_count": 18,
|
| 720 |
+
"id": "d11597f9-0441-440c-8214-b9d8b2df6f79",
|
| 721 |
+
"metadata": {},
|
| 722 |
+
"outputs": [
|
| 723 |
+
{
|
| 724 |
+
"data": {
|
| 725 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 726 |
+
"model_id": "46d3909d41c649acb800d4bf00197951",
|
| 727 |
+
"version_major": 2,
|
| 728 |
+
"version_minor": 0
|
| 729 |
+
},
|
| 730 |
+
"text/plain": [
|
| 731 |
+
"Map (num_proc=16): 0%| | 0/160800 [00:00<?, ? examples/s]"
|
| 732 |
+
]
|
| 733 |
+
},
|
| 734 |
+
"metadata": {},
|
| 735 |
+
"output_type": "display_data"
|
| 736 |
+
},
|
| 737 |
+
{
|
| 738 |
+
"data": {
|
| 739 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 740 |
+
"model_id": "e886faa17c774740a2058a5dd8e0673d",
|
| 741 |
+
"version_major": 2,
|
| 742 |
+
"version_minor": 0
|
| 743 |
+
},
|
| 744 |
+
"text/plain": [
|
| 745 |
+
"Map (num_proc=16): 0%| | 0/8552 [00:00<?, ? examples/s]"
|
| 746 |
+
]
|
| 747 |
+
},
|
| 748 |
+
"metadata": {},
|
| 749 |
+
"output_type": "display_data"
|
| 750 |
+
}
|
| 751 |
+
],
|
| 752 |
+
"source": [
|
| 753 |
+
"tokds = ds.map(lambda x: tokenizer(x['prompt']), num_proc=16)"
|
| 754 |
+
]
|
| 755 |
+
},
|
| 756 |
+
{
|
| 757 |
+
"cell_type": "code",
|
| 758 |
+
"execution_count": 19,
|
| 759 |
+
"id": "84290aac-1c4e-4d29-89bd-318cf2c9daf3",
|
| 760 |
+
"metadata": {},
|
| 761 |
+
"outputs": [
|
| 762 |
+
{
|
| 763 |
+
"data": {
|
| 764 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 765 |
+
"model_id": "eb0406bdb9884fcc826630224f2d1a8a",
|
| 766 |
+
"version_major": 2,
|
| 767 |
+
"version_minor": 0
|
| 768 |
+
},
|
| 769 |
+
"text/plain": [
|
| 770 |
+
"Map: 0%| | 0/160800 [00:00<?, ? examples/s]"
|
| 771 |
+
]
|
| 772 |
+
},
|
| 773 |
+
"metadata": {},
|
| 774 |
+
"output_type": "display_data"
|
| 775 |
+
},
|
| 776 |
+
{
|
| 777 |
+
"data": {
|
| 778 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 779 |
+
"model_id": "50580c27e575445bb239783adee19f90",
|
| 780 |
+
"version_major": 2,
|
| 781 |
+
"version_minor": 0
|
| 782 |
+
},
|
| 783 |
+
"text/plain": [
|
| 784 |
+
"Map: 0%| | 0/8552 [00:00<?, ? examples/s]"
|
| 785 |
+
]
|
| 786 |
+
},
|
| 787 |
+
"metadata": {},
|
| 788 |
+
"output_type": "display_data"
|
| 789 |
+
}
|
| 790 |
+
],
|
| 791 |
+
"source": [
|
| 792 |
+
"tokds = tokds.map(lambda x: {\"prompt_length\": len(x['input_ids'])})"
|
| 793 |
+
]
|
| 794 |
+
},
|
| 795 |
+
{
|
| 796 |
+
"cell_type": "code",
|
| 797 |
+
"execution_count": 22,
|
| 798 |
+
"id": "44d2f307-118b-493d-b626-97490e2bc4aa",
|
| 799 |
+
"metadata": {},
|
| 800 |
+
"outputs": [
|
| 801 |
+
{
|
| 802 |
+
"data": {
|
| 803 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 804 |
+
"model_id": "588d062fd6c2489da6f57b287c66d6e6",
|
| 805 |
+
"version_major": 2,
|
| 806 |
+
"version_minor": 0
|
| 807 |
+
},
|
| 808 |
+
"text/plain": [
|
| 809 |
+
"Filter (num_proc=16): 0%| | 0/160800 [00:00<?, ? examples/s]"
|
| 810 |
+
]
|
| 811 |
+
},
|
| 812 |
+
"metadata": {},
|
| 813 |
+
"output_type": "display_data"
|
| 814 |
+
},
|
| 815 |
+
{
|
| 816 |
+
"data": {
|
| 817 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 818 |
+
"model_id": "bc9327dc6ed2467597a56b4655aca9a9",
|
| 819 |
+
"version_major": 2,
|
| 820 |
+
"version_minor": 0
|
| 821 |
+
},
|
| 822 |
+
"text/plain": [
|
| 823 |
+
"Filter (num_proc=16): 0%| | 0/8552 [00:00<?, ? examples/s]"
|
| 824 |
+
]
|
| 825 |
+
},
|
| 826 |
+
"metadata": {},
|
| 827 |
+
"output_type": "display_data"
|
| 828 |
+
}
|
| 829 |
+
],
|
| 830 |
+
"source": [
|
| 831 |
+
"filttokds = tokds.filter(lambda x: x[\"prompt_length\"] > 1024, num_proc=16)"
|
| 832 |
+
]
|
| 833 |
+
},
|
| 834 |
+
{
|
| 835 |
+
"cell_type": "code",
|
| 836 |
+
"execution_count": 25,
|
| 837 |
+
"id": "2b6d57f7-40b7-4417-88bc-83c63b22f153",
|
| 838 |
+
"metadata": {},
|
| 839 |
+
"outputs": [
|
| 840 |
+
{
|
| 841 |
+
"data": {
|
| 842 |
+
"text/plain": [
|
| 843 |
+
"31"
|
| 844 |
+
]
|
| 845 |
+
},
|
| 846 |
+
"execution_count": 25,
|
| 847 |
+
"metadata": {},
|
| 848 |
+
"output_type": "execute_result"
|
| 849 |
+
}
|
| 850 |
+
],
|
| 851 |
+
"source": [
|
| 852 |
+
"len(filttokds[\"test\"])"
|
| 853 |
+
]
|
| 854 |
+
},
|
| 855 |
+
{
|
| 856 |
+
"cell_type": "code",
|
| 857 |
+
"execution_count": null,
|
| 858 |
+
"id": "78d391fa-9a57-446b-9007-fe64ef8fc735",
|
| 859 |
+
"metadata": {},
|
| 860 |
+
"outputs": [],
|
| 861 |
+
"source": [
|
| 862 |
+
"tokds = ds.map(lambda x: tokenizer(x['prompt']), num_proc=16)"
|
| 863 |
+
]
|
| 864 |
+
},
|
| 865 |
+
{
|
| 866 |
+
"cell_type": "code",
|
| 867 |
+
"execution_count": 31,
|
| 868 |
+
"id": "176dbd05-67c5-45a6-b891-1237deb7d6c9",
|
| 869 |
+
"metadata": {},
|
| 870 |
+
"outputs": [],
|
| 871 |
+
"source": [
|
| 872 |
+
"ds = load_dataset(\"mnoukhov/summarize_from_feedback_tldr_3_filtered_oai_preprocessing_1706381144\")"
|
| 873 |
+
]
|
| 874 |
+
},
|
| 875 |
+
{
|
| 876 |
+
"cell_type": "code",
|
| 877 |
+
"execution_count": 32,
|
| 878 |
+
"id": "9eab3eaa-55ed-4279-96d6-3c189266ba86",
|
| 879 |
+
"metadata": {},
|
| 880 |
+
"outputs": [
|
| 881 |
+
{
|
| 882 |
+
"data": {
|
| 883 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 884 |
+
"model_id": "911df020ac294d9ca2b360e1a0be3f93",
|
| 885 |
+
"version_major": 2,
|
| 886 |
+
"version_minor": 0
|
| 887 |
+
},
|
| 888 |
+
"text/plain": [
|
| 889 |
+
"Filter: 0%| | 0/116722 [00:00<?, ? examples/s]"
|
| 890 |
+
]
|
| 891 |
+
},
|
| 892 |
+
"metadata": {},
|
| 893 |
+
"output_type": "display_data"
|
| 894 |
+
}
|
| 895 |
+
],
|
| 896 |
+
"source": [
|
| 897 |
+
"ds[\"train\"] = ds[\"train\"].filter(lambda x: x[\"has_comparison\"] == True)"
|
| 898 |
+
]
|
| 899 |
+
},
|
| 900 |
+
{
|
| 901 |
+
"cell_type": "code",
|
| 902 |
+
"execution_count": 34,
|
| 903 |
+
"id": "9cc44838-af6d-4e3d-be4e-49436900f469",
|
| 904 |
+
"metadata": {},
|
| 905 |
+
"outputs": [
|
| 906 |
+
{
|
| 907 |
+
"data": {
|
| 908 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 909 |
+
"model_id": "4041ceb7527a4e638b138fc12897c35e",
|
| 910 |
+
"version_major": 2,
|
| 911 |
+
"version_minor": 0
|
| 912 |
+
},
|
| 913 |
+
"text/plain": [
|
| 914 |
+
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
| 915 |
+
]
|
| 916 |
+
},
|
| 917 |
+
"metadata": {},
|
| 918 |
+
"output_type": "display_data"
|
| 919 |
+
},
|
| 920 |
+
{
|
| 921 |
+
"data": {
|
| 922 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 923 |
+
"model_id": "51b19ac739f14b31a5820a9f077cf177",
|
| 924 |
+
"version_major": 2,
|
| 925 |
+
"version_minor": 0
|
| 926 |
+
},
|
| 927 |
+
"text/plain": [
|
| 928 |
+
"Creating parquet from Arrow format: 0%| | 0/10 [00:00<?, ?ba/s]"
|
| 929 |
+
]
|
| 930 |
+
},
|
| 931 |
+
"metadata": {},
|
| 932 |
+
"output_type": "display_data"
|
| 933 |
+
},
|
| 934 |
+
{
|
| 935 |
+
"data": {
|
| 936 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 937 |
+
"model_id": "d7e0c946845940bb8de920287d982cd6",
|
| 938 |
+
"version_major": 2,
|
| 939 |
+
"version_minor": 0
|
| 940 |
+
},
|
| 941 |
+
"text/plain": [
|
| 942 |
+
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
| 943 |
+
]
|
| 944 |
+
},
|
| 945 |
+
"metadata": {},
|
| 946 |
+
"output_type": "display_data"
|
| 947 |
+
},
|
| 948 |
+
{
|
| 949 |
+
"data": {
|
| 950 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 951 |
+
"model_id": "acd8997214f448ca8cc665b4fd3b1af6",
|
| 952 |
+
"version_major": 2,
|
| 953 |
+
"version_minor": 0
|
| 954 |
+
},
|
| 955 |
+
"text/plain": [
|
| 956 |
+
"Creating parquet from Arrow format: 0%| | 0/7 [00:00<?, ?ba/s]"
|
| 957 |
+
]
|
| 958 |
+
},
|
| 959 |
+
"metadata": {},
|
| 960 |
+
"output_type": "display_data"
|
| 961 |
+
},
|
| 962 |
+
{
|
| 963 |
+
"data": {
|
| 964 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 965 |
+
"model_id": "cae753400174470f8c97d61fbb557202",
|
| 966 |
+
"version_major": 2,
|
| 967 |
+
"version_minor": 0
|
| 968 |
+
},
|
| 969 |
+
"text/plain": [
|
| 970 |
+
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
| 971 |
+
]
|
| 972 |
+
},
|
| 973 |
+
"metadata": {},
|
| 974 |
+
"output_type": "display_data"
|
| 975 |
+
},
|
| 976 |
+
{
|
| 977 |
+
"data": {
|
| 978 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 979 |
+
"model_id": "2e6161edbdc24eca8fc89781a3b511e8",
|
| 980 |
+
"version_major": 2,
|
| 981 |
+
"version_minor": 0
|
| 982 |
+
},
|
| 983 |
+
"text/plain": [
|
| 984 |
+
"Creating parquet from Arrow format: 0%| | 0/7 [00:00<?, ?ba/s]"
|
| 985 |
+
]
|
| 986 |
+
},
|
| 987 |
+
"metadata": {},
|
| 988 |
+
"output_type": "display_data"
|
| 989 |
+
},
|
| 990 |
+
{
|
| 991 |
+
"name": "stderr",
|
| 992 |
+
"output_type": "stream",
|
| 993 |
+
"text": [
|
| 994 |
+
"/home/toolkit/.local/lib/python3.11/site-packages/huggingface_hub/file_download.py:983: UserWarning: Not enough free disk space to download the file. The expected file size is: 0.00 MB. The target location /home/toolkit/huggingface/hub only has 0.00 MB free disk space.\n",
|
| 995 |
+
" warnings.warn(\n",
|
| 996 |
+
"/home/toolkit/.local/lib/python3.11/site-packages/huggingface_hub/file_download.py:983: UserWarning: Not enough free disk space to download the file. The expected file size is: 0.00 MB. The target location /home/toolkit/huggingface/hub/datasets--mnoukhov--summarize_from_feedback_tldr_3_filtered_oai_preprocessing_1706381144_labelled/blobs only has 0.00 MB free disk space.\n",
|
| 997 |
+
" warnings.warn(\n"
|
| 998 |
+
]
|
| 999 |
+
},
|
| 1000 |
+
{
|
| 1001 |
+
"data": {
|
| 1002 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 1003 |
+
"model_id": "d6504b2578bf42a3810c24e04da166e1",
|
| 1004 |
+
"version_major": 2,
|
| 1005 |
+
"version_minor": 0
|
| 1006 |
+
},
|
| 1007 |
+
"text/plain": [
|
| 1008 |
+
"README.md: 0%| | 0.00/1.17k [00:00<?, ?B/s]"
|
| 1009 |
+
]
|
| 1010 |
+
},
|
| 1011 |
+
"metadata": {},
|
| 1012 |
+
"output_type": "display_data"
|
| 1013 |
+
},
|
| 1014 |
+
{
|
| 1015 |
+
"data": {
|
| 1016 |
+
"text/plain": [
|
| 1017 |
+
"CommitInfo(commit_url='https://huggingface.co/datasets/mnoukhov/summarize_from_feedback_tldr_3_filtered_oai_preprocessing_1706381144_labelled/commit/a873a0b902f97283fb440254b724da8257439c33', commit_message='Upload dataset', commit_description='', oid='a873a0b902f97283fb440254b724da8257439c33', pr_url=None, pr_revision=None, pr_num=None)"
|
| 1018 |
+
]
|
| 1019 |
+
},
|
| 1020 |
+
"execution_count": 34,
|
| 1021 |
+
"metadata": {},
|
| 1022 |
+
"output_type": "execute_result"
|
| 1023 |
+
}
|
| 1024 |
+
],
|
| 1025 |
+
"source": [
|
| 1026 |
+
"ds.push_to_hub(\"mnoukhov/summarize_from_feedback_tldr_3_filtered_oai_preprocessing_1706381144_labelled\")"
|
| 1027 |
+
]
|
| 1028 |
+
},
|
| 1029 |
+
{
|
| 1030 |
+
"cell_type": "code",
|
| 1031 |
+
"execution_count": 33,
|
| 1032 |
+
"id": "557d07cf-781c-4c9a-8499-2bd4d076e98d",
|
| 1033 |
+
"metadata": {},
|
| 1034 |
+
"outputs": [
|
| 1035 |
+
{
|
| 1036 |
+
"data": {
|
| 1037 |
+
"text/plain": [
|
| 1038 |
+
"DatasetDict({\n",
|
| 1039 |
+
" train: Dataset({\n",
|
| 1040 |
+
" features: ['id', 'subreddit', 'title', 'post', 'summary', 'query_token', 'query', 'reference_response', 'reference_response_token', 'reference_response_token_len', 'query_reference_response', 'query_reference_response_token', 'query_reference_response_token_response_label', 'query_reference_response_token_len', 'has_comparison'],\n",
|
| 1041 |
+
" num_rows: 9504\n",
|
| 1042 |
+
" })\n",
|
| 1043 |
+
" validation: Dataset({\n",
|
| 1044 |
+
" features: ['id', 'subreddit', 'title', 'post', 'summary', 'query_token', 'query', 'reference_response', 'reference_response_token', 'reference_response_token_len', 'query_reference_response', 'query_reference_response_token', 'query_reference_response_token_response_label', 'query_reference_response_token_len', 'has_comparison'],\n",
|
| 1045 |
+
" num_rows: 6447\n",
|
| 1046 |
+
" })\n",
|
| 1047 |
+
" test: Dataset({\n",
|
| 1048 |
+
" features: ['id', 'subreddit', 'title', 'post', 'summary', 'query_token', 'query', 'reference_response', 'reference_response_token', 'reference_response_token_len', 'query_reference_response', 'query_reference_response_token', 'query_reference_response_token_response_label', 'query_reference_response_token_len', 'has_comparison'],\n",
|
| 1049 |
+
" num_rows: 6553\n",
|
| 1050 |
+
" })\n",
|
| 1051 |
+
"})"
|
| 1052 |
+
]
|
| 1053 |
+
},
|
| 1054 |
+
"execution_count": 33,
|
| 1055 |
+
"metadata": {},
|
| 1056 |
+
"output_type": "execute_result"
|
| 1057 |
+
}
|
| 1058 |
+
],
|
| 1059 |
+
"source": [
|
| 1060 |
+
"ds"
|
| 1061 |
+
]
|
| 1062 |
+
},
|
| 1063 |
+
{
|
| 1064 |
+
"cell_type": "code",
|
| 1065 |
+
"execution_count": null,
|
| 1066 |
+
"id": "a7ad1cea-5ac6-4d57-9aff-6783ea61fb13",
|
| 1067 |
+
"metadata": {},
|
| 1068 |
+
"outputs": [],
|
| 1069 |
+
"source": []
|
| 1070 |
+
}
|
| 1071 |
+
],
|
| 1072 |
+
"metadata": {
|
| 1073 |
+
"kernelspec": {
|
| 1074 |
+
"display_name": "Python 3 (ipykernel)",
|
| 1075 |
+
"language": "python",
|
| 1076 |
+
"name": "python3"
|
| 1077 |
+
},
|
| 1078 |
+
"language_info": {
|
| 1079 |
+
"codemirror_mode": {
|
| 1080 |
+
"name": "ipython",
|
| 1081 |
+
"version": 3
|
| 1082 |
+
},
|
| 1083 |
+
"file_extension": ".py",
|
| 1084 |
+
"mimetype": "text/x-python",
|
| 1085 |
+
"name": "python",
|
| 1086 |
+
"nbconvert_exporter": "python",
|
| 1087 |
+
"pygments_lexer": "ipython3",
|
| 1088 |
+
"version": "3.11.2"
|
| 1089 |
+
}
|
| 1090 |
+
},
|
| 1091 |
+
"nbformat": 4,
|
| 1092 |
+
"nbformat_minor": 5
|
| 1093 |
+
}
|
code/__pycache__/generate_and_eval.cpython-311.pyc
ADDED
|
Binary file (15.2 kB). View file
|
|
|
code/__pycache__/generate_vllm.cpython-311.pyc
ADDED
|
Binary file (12.7 kB). View file
|
|
|
code/__pycache__/scalar_rm_model.cpython-311.pyc
ADDED
|
Binary file (10.2 kB). View file
|
|
|
code/callbacks.py
ADDED
|
@@ -0,0 +1,471 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 4 |
+
|
| 5 |
+
import accelerate
|
| 6 |
+
import torch
|
| 7 |
+
from datasets import Dataset
|
| 8 |
+
from torch.utils.data import DataLoader
|
| 9 |
+
from tqdm.auto import tqdm
|
| 10 |
+
from transformers import PreTrainedTokenizerBase, TrainerCallback
|
| 11 |
+
|
| 12 |
+
import wandb
|
| 13 |
+
from trl.trainer.utils import pad_to_length
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@dataclass
|
| 17 |
+
class PromptAndTextCollator:
|
| 18 |
+
tokenizer: PreTrainedTokenizerBase
|
| 19 |
+
padding: Union[bool, str] = True
|
| 20 |
+
max_prompt_length: Optional[int] = None
|
| 21 |
+
max_length: Optional[int] = None
|
| 22 |
+
prompt_field: str = "prompt"
|
| 23 |
+
target_field: str = "label"
|
| 24 |
+
return_tensors: str = "pt"
|
| 25 |
+
|
| 26 |
+
def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, Any]:
|
| 27 |
+
prompts = [feat[self.prompt_field] for feat in features]
|
| 28 |
+
texts = [feat[self.prompt_field] + " " + feat[self.target_field] for feat in features]
|
| 29 |
+
|
| 30 |
+
original_side = self.tokenizer.padding_side
|
| 31 |
+
self.tokenizer.padding_side = "left"
|
| 32 |
+
|
| 33 |
+
tokenized_batch = self.tokenizer(
|
| 34 |
+
prompts,
|
| 35 |
+
truncation=True,
|
| 36 |
+
padding=True,
|
| 37 |
+
max_length=self.max_prompt_length,
|
| 38 |
+
return_tensors=self.return_tensors,
|
| 39 |
+
)
|
| 40 |
+
tokenized_batch["prompt"] = prompts
|
| 41 |
+
|
| 42 |
+
self.tokenizer.padding_side = original_side
|
| 43 |
+
|
| 44 |
+
tokenized_texts = self.tokenizer(
|
| 45 |
+
texts,
|
| 46 |
+
truncation=True,
|
| 47 |
+
padding=True,
|
| 48 |
+
max_length=self.max_length,
|
| 49 |
+
return_tensors=self.return_tensors,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
text_labels = tokenized_texts["input_ids"].clone()
|
| 53 |
+
if self.tokenizer.pad_token_id is not None:
|
| 54 |
+
text_labels[text_labels == self.tokenizer.pad_token_id] = -100
|
| 55 |
+
|
| 56 |
+
tokenized_batch.update(
|
| 57 |
+
{
|
| 58 |
+
"text_input_ids": tokenized_texts["input_ids"],
|
| 59 |
+
"text_attention_mask": tokenized_texts["attention_mask"],
|
| 60 |
+
"text_labels": text_labels,
|
| 61 |
+
}
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
return tokenized_batch
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class GoldModelRewardCallback(TrainerCallback):
|
| 68 |
+
def __init__(
|
| 69 |
+
self,
|
| 70 |
+
args,
|
| 71 |
+
gold_model,
|
| 72 |
+
gold_eval_dataset,
|
| 73 |
+
tokenizer,
|
| 74 |
+
accelerator,
|
| 75 |
+
max_length,
|
| 76 |
+
max_prompt_length,
|
| 77 |
+
prompt_field,
|
| 78 |
+
target_field,
|
| 79 |
+
gold_load_and_unload=False,
|
| 80 |
+
log_n_samples_during_eval=0,
|
| 81 |
+
generation_config=None,
|
| 82 |
+
):
|
| 83 |
+
self.max_length = max_length
|
| 84 |
+
self.log_n_samples_during_eval = log_n_samples_during_eval
|
| 85 |
+
self.generation_config = generation_config
|
| 86 |
+
|
| 87 |
+
# data_collator = DataCollatorWithPadding(tokenizer)
|
| 88 |
+
data_collator = PromptAndTextCollator(
|
| 89 |
+
tokenizer,
|
| 90 |
+
max_prompt_length=max_prompt_length,
|
| 91 |
+
max_length=max_length,
|
| 92 |
+
prompt_field=prompt_field,
|
| 93 |
+
target_field=target_field,
|
| 94 |
+
)
|
| 95 |
+
dataloader_params = {
|
| 96 |
+
"batch_size": args.eval_batch_size,
|
| 97 |
+
"collate_fn": data_collator,
|
| 98 |
+
"num_workers": args.dataloader_num_workers,
|
| 99 |
+
"pin_memory": args.dataloader_pin_memory,
|
| 100 |
+
}
|
| 101 |
+
dataloader = DataLoader(gold_eval_dataset, **dataloader_params)
|
| 102 |
+
self.dataloader = accelerator.prepare(dataloader)
|
| 103 |
+
self.accelerator = accelerator
|
| 104 |
+
self.completed_step = -1
|
| 105 |
+
self.gold_model = gold_model
|
| 106 |
+
self.gold_load_and_unload = gold_load_and_unload
|
| 107 |
+
# keep model on gpu the whole time
|
| 108 |
+
if not self.gold_load_and_unload:
|
| 109 |
+
self.gold_model = self.accelerator.prepare(self.gold_model)
|
| 110 |
+
|
| 111 |
+
def on_evaluate(self, args, state, control, model, tokenizer, metrics, **kwargs):
|
| 112 |
+
samples_to_log = []
|
| 113 |
+
gold_reward_sum = 0.0
|
| 114 |
+
nll_sum = 0.0
|
| 115 |
+
total_samples = 0
|
| 116 |
+
sample_length_sum = 0.0
|
| 117 |
+
|
| 118 |
+
# load model onto gpu for inference then unload
|
| 119 |
+
if self.gold_load_and_unload:
|
| 120 |
+
self.gold_model = self.accelerator.prepare(self.gold_model)
|
| 121 |
+
|
| 122 |
+
if state.global_step == self.completed_step:
|
| 123 |
+
return
|
| 124 |
+
|
| 125 |
+
for inputs in tqdm(
|
| 126 |
+
self.dataloader, desc="Gold Eval", dynamic_ncols=True, disable=not state.is_local_process_zero
|
| 127 |
+
):
|
| 128 |
+
# get loss over true continuation i.e. ppl on dataset
|
| 129 |
+
with torch.no_grad():
|
| 130 |
+
nll_loss = model(
|
| 131 |
+
input_ids=inputs["text_input_ids"],
|
| 132 |
+
attention_mask=inputs["text_attention_mask"],
|
| 133 |
+
labels=inputs["text_labels"],
|
| 134 |
+
).loss
|
| 135 |
+
|
| 136 |
+
nll_loss = self.accelerator.gather_for_metrics(nll_loss)
|
| 137 |
+
|
| 138 |
+
# generate from model
|
| 139 |
+
policy_output_decoded, ref_output_decoded, policy_output_ids = self.get_batch_samples(
|
| 140 |
+
model,
|
| 141 |
+
tokenizer,
|
| 142 |
+
inputs["input_ids"],
|
| 143 |
+
inputs["attention_mask"],
|
| 144 |
+
return_ids=True,
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
# gold reward
|
| 148 |
+
policy_output_attention_mask = (policy_output_ids != tokenizer.pad_token_id).to(torch.int64)
|
| 149 |
+
with torch.no_grad():
|
| 150 |
+
gold_rewards = self.gold_model(
|
| 151 |
+
input_ids=policy_output_ids, attention_mask=policy_output_attention_mask
|
| 152 |
+
)[0]
|
| 153 |
+
|
| 154 |
+
gold_rewards = self.accelerator.gather_for_metrics(gold_rewards)
|
| 155 |
+
|
| 156 |
+
if state.is_local_process_zero:
|
| 157 |
+
nll_sum += nll_loss.sum().item()
|
| 158 |
+
gold_reward_sum += gold_rewards.sum().item()
|
| 159 |
+
total_samples += gold_rewards.size(0)
|
| 160 |
+
sample_length_sum += policy_output_attention_mask.sum().item()
|
| 161 |
+
|
| 162 |
+
# Sample and save to game log if requested (for one batch to save time)
|
| 163 |
+
for i, (prompt, pol, ref) in enumerate(
|
| 164 |
+
zip(inputs["prompt"], policy_output_decoded, ref_output_decoded)
|
| 165 |
+
):
|
| 166 |
+
if len(samples_to_log) < self.log_n_samples_during_eval:
|
| 167 |
+
samples_to_log.append([prompt, pol[len(prompt) :], ref[len(prompt) :]])
|
| 168 |
+
else:
|
| 169 |
+
break
|
| 170 |
+
|
| 171 |
+
if self.gold_load_and_unload:
|
| 172 |
+
self.gold_model = self.gold_model.to("cpu")
|
| 173 |
+
torch.cuda.empty_cache()
|
| 174 |
+
|
| 175 |
+
if state.is_world_process_zero:
|
| 176 |
+
gold_log = {
|
| 177 |
+
"eval/gold_rewards_mean": gold_reward_sum / total_samples,
|
| 178 |
+
"eval/perplexity": math.exp(nll_sum / total_samples),
|
| 179 |
+
"eval/gold_sample_length": sample_length_sum / total_samples,
|
| 180 |
+
}
|
| 181 |
+
for key, value in gold_log.items():
|
| 182 |
+
print(f"{key}: {value}")
|
| 183 |
+
if state.epoch:
|
| 184 |
+
gold_log["epoch"] = round(state.epoch, 2)
|
| 185 |
+
gold_log["step"] = state.global_step
|
| 186 |
+
if samples_to_log:
|
| 187 |
+
gold_log["gold_log"] = (
|
| 188 |
+
wandb.Table(
|
| 189 |
+
columns=["Prompt", "Policy", "Ref Model"],
|
| 190 |
+
rows=samples_to_log,
|
| 191 |
+
),
|
| 192 |
+
)
|
| 193 |
+
wandb.log(gold_log)
|
| 194 |
+
|
| 195 |
+
self.completed_step = state.global_step
|
| 196 |
+
|
| 197 |
+
def get_batch_samples(self, model, tokenizer, input_ids, attention_mask, return_ids=False) -> Tuple[str, str]:
|
| 198 |
+
"""Reduce inputs to unseen prompts, and maximum batch size if necessary
|
| 199 |
+
Generate samples from the model and reference model for the given batch of inputs."""
|
| 200 |
+
policy_output = model.generate(
|
| 201 |
+
input_ids=input_ids,
|
| 202 |
+
attention_mask=attention_mask,
|
| 203 |
+
generation_config=self.generation_config,
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
# if self.ref_model is None:
|
| 207 |
+
with self.accelerator.unwrap_model(model).disable_adapter():
|
| 208 |
+
reference_output = model.generate(
|
| 209 |
+
input_ids=input_ids,
|
| 210 |
+
attention_mask=attention_mask,
|
| 211 |
+
generation_config=self.generation_config,
|
| 212 |
+
)
|
| 213 |
+
# else:
|
| 214 |
+
# reference_output = self.ref_model.generate(
|
| 215 |
+
# **inputs,
|
| 216 |
+
# generation_config=self.generation_config,
|
| 217 |
+
# )
|
| 218 |
+
|
| 219 |
+
policy_output = pad_to_length(policy_output, self.max_length, tokenizer.pad_token_id)
|
| 220 |
+
policy_output_decoded = tokenizer.batch_decode(policy_output, skip_special_tokens=True)
|
| 221 |
+
|
| 222 |
+
reference_output = pad_to_length(reference_output, self.max_length, tokenizer.pad_token_id)
|
| 223 |
+
reference_output_decoded = tokenizer.batch_decode(reference_output, skip_special_tokens=True)
|
| 224 |
+
|
| 225 |
+
if return_ids:
|
| 226 |
+
return policy_output_decoded, reference_output_decoded, policy_output
|
| 227 |
+
else:
|
| 228 |
+
return policy_output_decoded, reference_output_decoded
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
class PerplexityCallback(TrainerCallback):
|
| 232 |
+
"""Like GoldModelReward in that you generate and get ppl on dataset
|
| 233 |
+
|
| 234 |
+
But you don't run eval with the gold model
|
| 235 |
+
Useful when gold model is very larger and you want to run inference later
|
| 236 |
+
"""
|
| 237 |
+
|
| 238 |
+
def __init__(
|
| 239 |
+
self,
|
| 240 |
+
args,
|
| 241 |
+
dataset,
|
| 242 |
+
tokenizer,
|
| 243 |
+
accelerator,
|
| 244 |
+
max_length,
|
| 245 |
+
max_prompt_length,
|
| 246 |
+
prompt_field,
|
| 247 |
+
target_field,
|
| 248 |
+
hub_model_id=None,
|
| 249 |
+
**kwargs,
|
| 250 |
+
):
|
| 251 |
+
self.max_length = max_length
|
| 252 |
+
|
| 253 |
+
# data_collator = DataCollatorWithPadding(tokenizer)
|
| 254 |
+
data_collator = PromptAndTextCollator(
|
| 255 |
+
tokenizer,
|
| 256 |
+
max_prompt_length=max_prompt_length,
|
| 257 |
+
max_length=max_length,
|
| 258 |
+
prompt_field=prompt_field,
|
| 259 |
+
target_field=target_field,
|
| 260 |
+
)
|
| 261 |
+
dataloader_params = {
|
| 262 |
+
"batch_size": args.eval_batch_size,
|
| 263 |
+
"collate_fn": data_collator,
|
| 264 |
+
"num_workers": args.dataloader_num_workers,
|
| 265 |
+
"pin_memory": args.dataloader_pin_memory,
|
| 266 |
+
}
|
| 267 |
+
dataloader = DataLoader(dataset, **dataloader_params)
|
| 268 |
+
self.dataloader = accelerator.prepare(dataloader)
|
| 269 |
+
self.accelerator = accelerator
|
| 270 |
+
self.completed_step = -1
|
| 271 |
+
self.hub_model_id = hub_model_id
|
| 272 |
+
|
| 273 |
+
def on_evaluate(self, args, state, control, model, tokenizer, metrics, **kwargs):
|
| 274 |
+
nll_sum = 0.0
|
| 275 |
+
total_samples = 0
|
| 276 |
+
|
| 277 |
+
if state.global_step == self.completed_step:
|
| 278 |
+
return
|
| 279 |
+
|
| 280 |
+
for inputs in tqdm(
|
| 281 |
+
self.dataloader, desc="PPL and Gen Eval", dynamic_ncols=True, disable=not state.is_local_process_zero
|
| 282 |
+
):
|
| 283 |
+
# get loss over true continuation i.e. ppl on dataset
|
| 284 |
+
with torch.no_grad():
|
| 285 |
+
nll_loss = model(
|
| 286 |
+
input_ids=inputs["text_input_ids"],
|
| 287 |
+
attention_mask=inputs["text_attention_mask"],
|
| 288 |
+
labels=inputs["text_labels"],
|
| 289 |
+
).loss
|
| 290 |
+
|
| 291 |
+
nll_loss = self.accelerator.gather_for_metrics(nll_loss)
|
| 292 |
+
|
| 293 |
+
if state.is_local_process_zero:
|
| 294 |
+
total_samples += nll_loss.size(0)
|
| 295 |
+
nll_sum += nll_loss.sum().item()
|
| 296 |
+
|
| 297 |
+
if state.is_world_process_zero:
|
| 298 |
+
# gather_for_metrics doesn't work for list of strings?
|
| 299 |
+
gold_log = {
|
| 300 |
+
"eval/perplexity": math.exp(nll_sum / total_samples),
|
| 301 |
+
}
|
| 302 |
+
for key, value in gold_log.items():
|
| 303 |
+
print(f"{key}: {value}")
|
| 304 |
+
if state.epoch:
|
| 305 |
+
gold_log["epoch"] = round(state.epoch, 2)
|
| 306 |
+
gold_log["step"] = state.global_step
|
| 307 |
+
|
| 308 |
+
wandb.log(gold_log)
|
| 309 |
+
|
| 310 |
+
if self.hub_model_id is not None:
|
| 311 |
+
model.push_to_hub(self.hub_model_id, revision=f"step{state.global_step}")
|
| 312 |
+
|
| 313 |
+
self.completed_step = state.global_step
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
class PerplexityGenCallback(TrainerCallback):
|
| 317 |
+
"""Like GoldModelReward in that you generate and get ppl on dataset
|
| 318 |
+
|
| 319 |
+
But you don't run eval with the gold model
|
| 320 |
+
Useful when gold model is very larger and you want to run inference later
|
| 321 |
+
"""
|
| 322 |
+
|
| 323 |
+
def __init__(
|
| 324 |
+
self,
|
| 325 |
+
args,
|
| 326 |
+
dataset,
|
| 327 |
+
tokenizer,
|
| 328 |
+
accelerator,
|
| 329 |
+
max_length,
|
| 330 |
+
max_prompt_length,
|
| 331 |
+
prompt_field,
|
| 332 |
+
target_field,
|
| 333 |
+
log_n_samples_during_eval=0,
|
| 334 |
+
generation_config=None,
|
| 335 |
+
hub_model_id="tmp",
|
| 336 |
+
):
|
| 337 |
+
self.max_length = max_length
|
| 338 |
+
self.log_n_samples_during_eval = log_n_samples_during_eval
|
| 339 |
+
self.generation_config = generation_config
|
| 340 |
+
|
| 341 |
+
# data_collator = DataCollatorWithPadding(tokenizer)
|
| 342 |
+
data_collator = PromptAndTextCollator(
|
| 343 |
+
tokenizer,
|
| 344 |
+
max_prompt_length=max_prompt_length,
|
| 345 |
+
max_length=max_length,
|
| 346 |
+
prompt_field=prompt_field,
|
| 347 |
+
target_field=target_field,
|
| 348 |
+
)
|
| 349 |
+
dataloader_params = {
|
| 350 |
+
"batch_size": args.eval_batch_size,
|
| 351 |
+
"collate_fn": data_collator,
|
| 352 |
+
"num_workers": args.dataloader_num_workers,
|
| 353 |
+
"pin_memory": args.dataloader_pin_memory,
|
| 354 |
+
}
|
| 355 |
+
dataloader = DataLoader(dataset, **dataloader_params)
|
| 356 |
+
self.dataloader = accelerator.prepare(dataloader)
|
| 357 |
+
self.accelerator = accelerator
|
| 358 |
+
self.completed_step = -1
|
| 359 |
+
self.hub_name = hub_model_id
|
| 360 |
+
|
| 361 |
+
def on_evaluate(self, args, state, control, model, tokenizer, metrics, **kwargs):
|
| 362 |
+
all_generations = []
|
| 363 |
+
all_prompts = []
|
| 364 |
+
nll_sum = 0.0
|
| 365 |
+
total_samples = 0
|
| 366 |
+
sample_length_sum = 0.0
|
| 367 |
+
|
| 368 |
+
if state.global_step == self.completed_step:
|
| 369 |
+
return
|
| 370 |
+
|
| 371 |
+
for inputs in tqdm(
|
| 372 |
+
self.dataloader, desc="PPL and Gen Eval", dynamic_ncols=True, disable=not state.is_local_process_zero
|
| 373 |
+
):
|
| 374 |
+
# get loss over true continuation i.e. ppl on dataset
|
| 375 |
+
with torch.no_grad():
|
| 376 |
+
nll_loss = model(
|
| 377 |
+
input_ids=inputs["text_input_ids"],
|
| 378 |
+
attention_mask=inputs["text_attention_mask"],
|
| 379 |
+
labels=inputs["text_labels"],
|
| 380 |
+
).loss
|
| 381 |
+
|
| 382 |
+
# generate from model
|
| 383 |
+
policy_output_ids = model.generate(
|
| 384 |
+
input_ids=inputs["input_ids"],
|
| 385 |
+
attention_mask=inputs["attention_mask"],
|
| 386 |
+
generation_config=self.generation_config,
|
| 387 |
+
)
|
| 388 |
+
policy_output_ids = pad_to_length(policy_output_ids, self.max_length, tokenizer.pad_token_id)
|
| 389 |
+
|
| 390 |
+
policy_output_attention_mask = (policy_output_ids != tokenizer.pad_token_id).to(torch.int64)
|
| 391 |
+
generation_sizes = policy_output_attention_mask.sum(dim=1)
|
| 392 |
+
|
| 393 |
+
(nll_loss, generation_ids, generation_sizes) = self.accelerator.gather_for_metrics(
|
| 394 |
+
(nll_loss, policy_output_ids, generation_sizes)
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
prompts = accelerate.utils.gather_object(inputs["prompt"])
|
| 398 |
+
|
| 399 |
+
if state.is_local_process_zero:
|
| 400 |
+
nll_sum += nll_loss.sum().item()
|
| 401 |
+
total_samples += generation_sizes.size(0)
|
| 402 |
+
sample_length_sum += generation_sizes.sum().item()
|
| 403 |
+
generation_strs = tokenizer.batch_decode(generation_ids, skip_special_tokens=True)
|
| 404 |
+
all_prompts.extend(prompts)
|
| 405 |
+
all_generations.extend(generation_strs)
|
| 406 |
+
|
| 407 |
+
if state.is_world_process_zero:
|
| 408 |
+
# gather_for_metrics doesn't work for list of strings?
|
| 409 |
+
gold_log = {
|
| 410 |
+
"eval/perplexity": math.exp(nll_sum / total_samples),
|
| 411 |
+
"eval/gold_sample_length": sample_length_sum / total_samples,
|
| 412 |
+
}
|
| 413 |
+
for key, value in gold_log.items():
|
| 414 |
+
print(f"{key}: {value}")
|
| 415 |
+
if state.epoch:
|
| 416 |
+
gold_log["epoch"] = round(state.epoch, 2)
|
| 417 |
+
gold_log["step"] = state.global_step
|
| 418 |
+
|
| 419 |
+
if self.log_n_samples_during_eval:
|
| 420 |
+
samples_to_log = [
|
| 421 |
+
[prompt, generation[len(prompt) :]]
|
| 422 |
+
for prompt, generation in zip(
|
| 423 |
+
all_prompts[: self.log_n_samples_during_eval],
|
| 424 |
+
all_generations[: self.log_n_samples_during_eval],
|
| 425 |
+
)
|
| 426 |
+
]
|
| 427 |
+
gold_log["gold_log"] = (
|
| 428 |
+
wandb.Table(
|
| 429 |
+
columns=["Prompt", "Policy"],
|
| 430 |
+
rows=samples_to_log,
|
| 431 |
+
),
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
wandb.log(gold_log)
|
| 435 |
+
generation_ds = Dataset.from_dict({"generations": all_generations})
|
| 436 |
+
generation_ds.push_to_hub(f"{self.hub_name}_generations", revision=str(state.global_step))
|
| 437 |
+
|
| 438 |
+
self.completed_step = state.global_step
|
| 439 |
+
|
| 440 |
+
def get_batch_samples(self, model, tokenizer, input_ids, attention_mask, return_ids=False) -> Tuple[str, str]:
|
| 441 |
+
"""Reduce inputs to unseen prompts, and maximum batch size if necessary
|
| 442 |
+
Generate samples from the model and reference model for the given batch of inputs."""
|
| 443 |
+
policy_output = model.generate(
|
| 444 |
+
input_ids=input_ids,
|
| 445 |
+
attention_mask=attention_mask,
|
| 446 |
+
generation_config=self.generation_config,
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
# if self.ref_model is None:
|
| 450 |
+
with self.accelerator.unwrap_model(model).disable_adapter():
|
| 451 |
+
reference_output = model.generate(
|
| 452 |
+
input_ids=input_ids,
|
| 453 |
+
attention_mask=attention_mask,
|
| 454 |
+
generation_config=self.generation_config,
|
| 455 |
+
)
|
| 456 |
+
# else:
|
| 457 |
+
# reference_output = self.ref_model.generate(
|
| 458 |
+
# **inputs,
|
| 459 |
+
# generation_config=self.generation_config,
|
| 460 |
+
# )
|
| 461 |
+
|
| 462 |
+
policy_output = pad_to_length(policy_output, self.max_length, tokenizer.pad_token_id)
|
| 463 |
+
policy_output_decoded = tokenizer.batch_decode(policy_output, skip_special_tokens=True)
|
| 464 |
+
|
| 465 |
+
reference_output = pad_to_length(reference_output, self.max_length, tokenizer.pad_token_id)
|
| 466 |
+
reference_output_decoded = tokenizer.batch_decode(reference_output, skip_special_tokens=True)
|
| 467 |
+
|
| 468 |
+
if return_ids:
|
| 469 |
+
return policy_output_decoded, reference_output_decoded, policy_output
|
| 470 |
+
else:
|
| 471 |
+
return policy_output_decoded, reference_output_decoded
|
code/configs/accelerate_zero2_4gpu.yml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
compute_environment: LOCAL_MACHINE
|
| 2 |
+
debug: false
|
| 3 |
+
deepspeed_config:
|
| 4 |
+
offload_optimizer_device: none
|
| 5 |
+
offload_param_device: none
|
| 6 |
+
zero3_init_flag: false
|
| 7 |
+
zero_stage: 2
|
| 8 |
+
distributed_type: DEEPSPEED
|
| 9 |
+
downcast_bf16: 'no'
|
| 10 |
+
machine_rank: 0
|
| 11 |
+
main_training_function: main
|
| 12 |
+
mixed_precision: 'no'
|
| 13 |
+
num_machines: 1
|
| 14 |
+
num_processes: 4
|
| 15 |
+
rdzv_backend: static
|
| 16 |
+
same_network: true
|
| 17 |
+
tpu_env: []
|
| 18 |
+
tpu_use_cluster: false
|
| 19 |
+
tpu_use_sudo: false
|
| 20 |
+
use_cpu: false
|
code/configs/create_rlhf_410m.yml
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
output_dir: /home/toolkit/huggingface/openai_summarize_tldr_rbaseline
|
| 2 |
+
train_split: train
|
| 3 |
+
eval_split: valid[:2000]
|
| 4 |
+
###
|
| 5 |
+
model_name: mnoukhov/pythia410m-tldr-sft-rm-adapter
|
| 6 |
+
new_column_name: reward_baseline
|
| 7 |
+
dataset_name: CarperAI/openai_summarize_tldr
|
| 8 |
+
load_in_8bit: False
|
| 9 |
+
fp16: True
|
| 10 |
+
batch_size: 32
|
| 11 |
+
max_length: 560
|
code/configs/create_rlhf_410m_1b.yml
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
output_dir: /home/toolkit/huggingface/openai_summarize_tldr_grbaseline
|
| 2 |
+
train_split: train
|
| 3 |
+
eval_split: valid[:2000]
|
| 4 |
+
###
|
| 5 |
+
model_name: mnoukhov/pythia1b-sft-rm-tldrprompt
|
| 6 |
+
new_column_name: gold_reward_baseline
|
| 7 |
+
dataset_name: mnoukhov/openai_summarize_tldr_rbaseline
|
| 8 |
+
load_in_8bit: False
|
| 9 |
+
fp16: True
|
| 10 |
+
batch_size: 32
|
| 11 |
+
max_length: 560
|
code/configs/dpo1b2_10k_pythia410m_fp16.yml
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_name: mnoukhov/pythia410m-tldr-sft
|
| 2 |
+
dataset_name: mnoukhov/openai_summarize_comparisons_tldrprompt_relabel1b
|
| 3 |
+
gold_model_name: mnoukhov/pythia1b-sft-rm-tldrprompt
|
| 4 |
+
pseudo_dataset_name: mnoukhov/openai_summarize_generated_10k
|
| 5 |
+
beta: 0.5
|
| 6 |
+
num_train_epochs: 5
|
| 7 |
+
eval_steps: 750
|
| 8 |
+
load_in_8bit: False
|
| 9 |
+
bf16: False
|
| 10 |
+
fp16: True
|
| 11 |
+
learning_rate: 1e-5
|
| 12 |
+
use_peft: True
|
| 13 |
+
lora_all_linear: True
|
| 14 |
+
lora_r: 8
|
| 15 |
+
lora_alpha: 32
|
| 16 |
+
lora_dropout: 0.05
|
| 17 |
+
gradient_accumulation_steps: 4
|
| 18 |
+
per_device_train_batch_size: 4
|
| 19 |
+
warmup_steps: 150
|
code/configs/dpo1b2_20k-reuse_pythia410m_fp16.yml
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_name: mnoukhov/pythia410m-tldr-sft
|
| 2 |
+
dataset_name: mnoukhov/openai_summarize_comparisons_tldrprompt_relabel1b
|
| 3 |
+
gold_model_name: mnoukhov/pythia1b-sft-rm-tldrprompt
|
| 4 |
+
pseudo_dataset_name: mnoukhov/openai_comparisons_20k_regen_and_relabelled
|
| 5 |
+
beta: 0.5
|
| 6 |
+
max_steps: 10000
|
| 7 |
+
eval_steps: 1000
|
| 8 |
+
load_in_8bit: False
|
| 9 |
+
bf16: False
|
| 10 |
+
fp16: True
|
| 11 |
+
learning_rate: 1e-5
|
| 12 |
+
use_peft: True
|
| 13 |
+
lora_all_linear: True
|
| 14 |
+
lora_r: 8
|
| 15 |
+
lora_alpha: 32
|
| 16 |
+
lora_dropout: 0.05
|
| 17 |
+
gradient_accumulation_steps: 4
|
| 18 |
+
per_device_train_batch_size: 4
|
| 19 |
+
warmup_steps: 150
|
code/configs/dpo1b2_20k_pythia410m-iter1_fp16.yml
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_name: mnoukhov/pythia410m-tldrprompt-dpo1b
|
| 2 |
+
dataset_name: mnoukhov/openai_summarize_comparisons_tldrprompt_relabel1b
|
| 3 |
+
gold_model_name: mnoukhov/pythia1b-sft-rm-tldrprompt
|
| 4 |
+
pseudo_dataset_name: mnoukhov/openai_summarize_generated_20k_relabel_410m_dpo1
|
| 5 |
+
beta: 0.5
|
| 6 |
+
max_steps: 10000
|
| 7 |
+
eval_steps: 1000
|
| 8 |
+
load_in_8bit: False
|
| 9 |
+
bf16: False
|
| 10 |
+
fp16: True
|
| 11 |
+
learning_rate: 1e-5
|
| 12 |
+
use_peft: True
|
| 13 |
+
lora_all_linear: True
|
| 14 |
+
lora_r: 8
|
| 15 |
+
lora_alpha: 32
|
| 16 |
+
lora_dropout: 0.05
|
| 17 |
+
gradient_accumulation_steps: 4
|
| 18 |
+
per_device_train_batch_size: 4
|
| 19 |
+
warmup_steps: 150
|
code/configs/dpo1b2_20k_pythia410m_fp16.yml
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_name: mnoukhov/pythia410m-tldr-sft
|
| 2 |
+
dataset_name: mnoukhov/openai_summarize_comparisons_tldrprompt_relabel1b
|
| 3 |
+
gold_model_name: mnoukhov/pythia1b-sft-rm-tldrprompt
|
| 4 |
+
pseudo_dataset_name: mnoukhov/openai_summarize_generated_20k_relabel_410m_dpo1
|
| 5 |
+
beta: 0.5
|
| 6 |
+
max_steps: 10000
|
| 7 |
+
eval_steps: 1000
|
| 8 |
+
load_in_8bit: False
|
| 9 |
+
bf16: False
|
| 10 |
+
fp16: True
|
| 11 |
+
learning_rate: 1e-5
|
| 12 |
+
use_peft: True
|
| 13 |
+
lora_all_linear: True
|
| 14 |
+
lora_r: 8
|
| 15 |
+
lora_alpha: 32
|
| 16 |
+
lora_dropout: 0.05
|
| 17 |
+
gradient_accumulation_steps: 4
|
| 18 |
+
per_device_train_batch_size: 4
|
| 19 |
+
warmup_steps: 150
|
code/configs/dpo1b2_20kgold_pythia410m-iter1_fp16.yml
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_name: mnoukhov/pythia410m-tldrprompt-dpo1b
|
| 2 |
+
dataset_name: mnoukhov/openai_summarize_comparisons_tldrprompt_relabel1b
|
| 3 |
+
gold_model_name: mnoukhov/pythia1b-sft-rm-tldrprompt
|
| 4 |
+
pseudo_dataset_name: mnoukhov/openai_summarize_generated_20k_relabel_1b
|
| 5 |
+
beta: 0.5
|
| 6 |
+
max_steps: 10000
|
| 7 |
+
eval_steps: 1000
|
| 8 |
+
load_in_8bit: False
|
| 9 |
+
bf16: False
|
| 10 |
+
fp16: True
|
| 11 |
+
learning_rate: 1e-5
|
| 12 |
+
use_peft: True
|
| 13 |
+
lora_all_linear: True
|
| 14 |
+
lora_r: 8
|
| 15 |
+
lora_alpha: 32
|
| 16 |
+
lora_dropout: 0.05
|
| 17 |
+
gradient_accumulation_steps: 4
|
| 18 |
+
per_device_train_batch_size: 4
|
| 19 |
+
warmup_steps: 150
|
code/configs/dpo1b2_20kgold_pythia410m_fp16.yml
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_name: mnoukhov/pythia410m-tldr-sft
|
| 2 |
+
dataset_name: mnoukhov/openai_summarize_comparisons_tldrprompt_relabel1b
|
| 3 |
+
gold_model_name: mnoukhov/pythia1b-sft-rm-tldrprompt
|
| 4 |
+
pseudo_dataset_name: mnoukhov/openai_summarize_generated_20k_relabel_1b
|
| 5 |
+
beta: 0.5
|
| 6 |
+
max_steps: 10000
|
| 7 |
+
eval_steps: 1000
|
| 8 |
+
load_in_8bit: False
|
| 9 |
+
bf16: False
|
| 10 |
+
fp16: True
|
| 11 |
+
learning_rate: 1e-5
|
| 12 |
+
use_peft: True
|
| 13 |
+
lora_all_linear: True
|
| 14 |
+
lora_r: 8
|
| 15 |
+
lora_alpha: 32
|
| 16 |
+
lora_dropout: 0.05
|
| 17 |
+
gradient_accumulation_steps: 4
|
| 18 |
+
per_device_train_batch_size: 4
|
| 19 |
+
warmup_steps: 150
|
code/configs/dpo1b2_20kgoldonly_pythia410m-iter1_fp16.yml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_name: mnoukhov/pythia410m-tldrprompt-dpo1b
|
| 2 |
+
dataset_name: mnoukhov/openai_summarize_comparisons_tldrprompt_relabel1b
|
| 3 |
+
train_split: train[:1]
|
| 4 |
+
gold_model_name: mnoukhov/pythia1b-sft-rm-tldrprompt
|
| 5 |
+
pseudo_dataset_name: mnoukhov/openai_summarize_generated_20k_relabel_1b
|
| 6 |
+
beta: 0.5
|
| 7 |
+
max_steps: 10000
|
| 8 |
+
eval_steps: 1000
|
| 9 |
+
load_in_8bit: False
|
| 10 |
+
bf16: False
|
| 11 |
+
fp16: True
|
| 12 |
+
learning_rate: 1e-5
|
| 13 |
+
use_peft: True
|
| 14 |
+
lora_all_linear: True
|
| 15 |
+
lora_r: 8
|
| 16 |
+
lora_alpha: 32
|
| 17 |
+
lora_dropout: 0.05
|
| 18 |
+
gradient_accumulation_steps: 4
|
| 19 |
+
per_device_train_batch_size: 4
|
| 20 |
+
warmup_steps: 150
|
code/configs/dpo1b2_20kgoldonly_pythia410m_fp16.yml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_name: mnoukhov/pythia410m-tldr-sft
|
| 2 |
+
dataset_name: mnoukhov/openai_summarize_comparisons_tldrprompt_relabel1b
|
| 3 |
+
train_split: train[:1]
|
| 4 |
+
gold_model_name: mnoukhov/pythia1b-sft-rm-tldrprompt
|
| 5 |
+
pseudo_dataset_name: mnoukhov/openai_summarize_generated_20k_relabel_1b
|
| 6 |
+
beta: 0.5
|
| 7 |
+
max_steps: 10000
|
| 8 |
+
eval_steps: 1000
|
| 9 |
+
load_in_8bit: False
|
| 10 |
+
bf16: False
|
| 11 |
+
fp16: True
|
| 12 |
+
learning_rate: 1e-5
|
| 13 |
+
use_peft: True
|
| 14 |
+
lora_all_linear: True
|
| 15 |
+
lora_r: 8
|
| 16 |
+
lora_alpha: 32
|
| 17 |
+
lora_dropout: 0.05
|
| 18 |
+
gradient_accumulation_steps: 4
|
| 19 |
+
per_device_train_batch_size: 4
|
| 20 |
+
warmup_steps: 150
|
code/configs/dpo1b2_20konly-reuse_pythia410m_fp16.yml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_name: mnoukhov/pythia410m-tldr-sft
|
| 2 |
+
dataset_name: mnoukhov/openai_summarize_comparisons_tldrprompt_relabel1b
|
| 3 |
+
train_split: train[:1]
|
| 4 |
+
gold_model_name: mnoukhov/pythia1b-sft-rm-tldrprompt
|
| 5 |
+
pseudo_dataset_name: mnoukhov/openai_comparisons_20k_regen_and_relabelled
|
| 6 |
+
beta: 0.5
|
| 7 |
+
max_steps: 10000
|
| 8 |
+
eval_steps: 1000
|
| 9 |
+
load_in_8bit: False
|
| 10 |
+
bf16: False
|
| 11 |
+
fp16: True
|
| 12 |
+
learning_rate: 1e-5
|
| 13 |
+
use_peft: True
|
| 14 |
+
lora_all_linear: True
|
| 15 |
+
lora_r: 8
|
| 16 |
+
lora_alpha: 32
|
| 17 |
+
lora_dropout: 0.05
|
| 18 |
+
gradient_accumulation_steps: 4
|
| 19 |
+
per_device_train_batch_size: 4
|
| 20 |
+
warmup_steps: 150
|
code/configs/dpo1b2_20konly_pythia410m-iter1_fp16.yml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_name: mnoukhov/pythia410m-tldrprompt-dpo1b
|
| 2 |
+
dataset_name: mnoukhov/openai_summarize_comparisons_tldrprompt_relabel1b
|
| 3 |
+
train_split: train[:1]
|
| 4 |
+
gold_model_name: mnoukhov/pythia1b-sft-rm-tldrprompt
|
| 5 |
+
pseudo_dataset_name: mnoukhov/openai_summarize_generated_20k_relabel_410m_dpo1
|
| 6 |
+
beta: 0.5
|
| 7 |
+
max_steps: 10000
|
| 8 |
+
eval_steps: 1000
|
| 9 |
+
load_in_8bit: False
|
| 10 |
+
bf16: False
|
| 11 |
+
fp16: True
|
| 12 |
+
learning_rate: 1e-5
|
| 13 |
+
use_peft: True
|
| 14 |
+
lora_all_linear: True
|
| 15 |
+
lora_r: 8
|
| 16 |
+
lora_alpha: 32
|
| 17 |
+
lora_dropout: 0.05
|
| 18 |
+
gradient_accumulation_steps: 4
|
| 19 |
+
per_device_train_batch_size: 4
|
| 20 |
+
warmup_steps: 150
|
code/configs/dpo1b2_20konly_pythia410m_fp16.yml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_name: mnoukhov/pythia410m-tldr-sft
|
| 2 |
+
dataset_name: mnoukhov/openai_summarize_comparisons_tldrprompt_relabel1b
|
| 3 |
+
train_split: train[:1]
|
| 4 |
+
gold_model_name: mnoukhov/pythia1b-sft-rm-tldrprompt
|
| 5 |
+
pseudo_dataset_name: mnoukhov/openai_summarize_generated_20k_relabel_410m_dpo1
|
| 6 |
+
beta: 0.5
|
| 7 |
+
max_steps: 10000
|
| 8 |
+
eval_steps: 1000
|
| 9 |
+
load_in_8bit: False
|
| 10 |
+
bf16: False
|
| 11 |
+
fp16: True
|
| 12 |
+
learning_rate: 1e-5
|
| 13 |
+
use_peft: True
|
| 14 |
+
lora_all_linear: True
|
| 15 |
+
lora_r: 8
|
| 16 |
+
lora_alpha: 32
|
| 17 |
+
lora_dropout: 0.05
|
| 18 |
+
gradient_accumulation_steps: 4
|
| 19 |
+
per_device_train_batch_size: 4
|
| 20 |
+
warmup_steps: 150
|
code/configs/dpo1b2_a100.yml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_name: mnoukhov/pythia410m-tldr-sft
|
| 2 |
+
dataset_name: mnoukhov/openai_summarize_comparisons_tldrprompt_relabel1b
|
| 3 |
+
train_split: train[:1]
|
| 4 |
+
gold_model_name: mnoukhov/pythia1b-sft-rm-tldrprompt
|
| 5 |
+
pseudo_dataset_name: mnoukhov/openai_summarize_generated_20k_relabel_410m_dpo1
|
| 6 |
+
beta: 0.5
|
| 7 |
+
max_steps: 10000
|
| 8 |
+
eval_steps: 1000
|
| 9 |
+
load_in_8bit: False
|
| 10 |
+
bf16: True
|
| 11 |
+
fp16: False
|
| 12 |
+
learning_rate: 1e-5
|
| 13 |
+
use_peft: True
|
| 14 |
+
lora_all_linear: True
|
| 15 |
+
lora_r: 8
|
| 16 |
+
lora_alpha: 32
|
| 17 |
+
lora_dropout: 0.05
|
| 18 |
+
gradient_accumulation_steps: 4
|
| 19 |
+
per_device_train_batch_size: 16
|
| 20 |
+
warmup_steps: 150
|
code/configs/dpo1b_eval_generated_pythia410m_fp16.yml
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_name: mnoukhov/pythia410m-tldrprompt-dpo1b-adapter
|
| 2 |
+
dataset_name: mnoukhov/openai_comparisons_20k_regen_and_relabelled
|
| 3 |
+
eval_split: train
|
| 4 |
+
use_peft: False
|
| 5 |
+
beta: 0.5
|
| 6 |
+
load_in_8bit: False
|
| 7 |
+
bf16: False
|
| 8 |
+
fp16: True
|
| 9 |
+
per_device_eval_batch_size: 8
|
| 10 |
+
warmup_steps: 150
|
| 11 |
+
mode: eval
|
code/configs/dpo1b_eval_pythia410m_fp16.yml
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_name: mnoukhov/pythia410m-tldr-sft
|
| 2 |
+
dataset_name: mnoukhov/openai_summarize_comparisons_tldrprompt_relabel1b
|
| 3 |
+
gold_model_name: mnoukhov/pythia1b-sft-rm-tldrprompt
|
| 4 |
+
beta: 0.5
|
| 5 |
+
num_train_epochs: 5
|
| 6 |
+
eval_steps: 750
|
| 7 |
+
load_in_8bit: False
|
| 8 |
+
bf16: False
|
| 9 |
+
fp16: True
|
| 10 |
+
learning_rate: 1e-5
|
| 11 |
+
use_peft: True
|
| 12 |
+
lora_all_linear: True
|
| 13 |
+
lora_r: 8
|
| 14 |
+
lora_alpha: 32
|
| 15 |
+
lora_dropout: 0.05
|
| 16 |
+
gradient_accumulation_steps: 4
|
| 17 |
+
per_device_train_batch_size: 4
|
| 18 |
+
warmup_steps: 150
|
| 19 |
+
just_eval: True
|
code/configs/dpo1b_eval_regenerated_pythia410m_fp16.yml
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_name: mnoukhov/pythia410m-tldrprompt-dpo1b-adapter
|
| 2 |
+
dataset_name: arianhosseini/openai_comparisons_20k_regen_and_relabelled
|
| 3 |
+
eval_split: train
|
| 4 |
+
use_peft: False
|
| 5 |
+
beta: 0.5
|
| 6 |
+
load_in_8bit: False
|
| 7 |
+
bf16: False
|
| 8 |
+
fp16: True
|
| 9 |
+
per_device_eval_batch_size: 8
|
| 10 |
+
warmup_steps: 150
|
| 11 |
+
mode: eval
|
code/configs/dpo1b_predict_generated_pythia410m-dpo1.yml
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
output_dir: /home/toolkit/huggingface/openai_summarize_generated_20k_relabel_1b_predict_410m-dpo1
|
| 2 |
+
mode: predict
|
| 3 |
+
model_name: mnoukhov/pythia410m-tldrprompt-dpo1b-adapter
|
| 4 |
+
dataset_name: mnoukhov/openai_summarize_generated_20k_relabel_1b_margin
|
| 5 |
+
eval_split: train
|
| 6 |
+
use_peft: False
|
| 7 |
+
beta: 0.5
|
| 8 |
+
load_in_8bit: False
|
| 9 |
+
bf16: False
|
| 10 |
+
fp16: True
|
| 11 |
+
per_device_eval_batch_size: 8
|
code/configs/dpo1b_pythia410m_fp16.yml
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_name: mnoukhov/pythia410m-tldr-sft
|
| 2 |
+
dataset_name: mnoukhov/openai_summarize_comparisons_tldrprompt_relabel1b
|
| 3 |
+
gold_model_name: mnoukhov/pythia1b-sft-rm-tldrprompt
|
| 4 |
+
beta: 0.5
|
| 5 |
+
max_steps: 10000
|
| 6 |
+
eval_steps: 1000
|
| 7 |
+
load_in_8bit: False
|
| 8 |
+
bf16: False
|
| 9 |
+
fp16: True
|
| 10 |
+
learning_rate: 1e-5
|
| 11 |
+
use_peft: True
|
| 12 |
+
lora_all_linear: True
|
| 13 |
+
lora_r: 8
|
| 14 |
+
lora_alpha: 32
|
| 15 |
+
lora_dropout: 0.05
|
| 16 |
+
gradient_accumulation_steps: 4
|
| 17 |
+
per_device_train_batch_size: 4
|
| 18 |
+
warmup_steps: 150
|
code/configs/dpo1b_relabel_comparisons.yml
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
output_dir: /home/toolkit/huggingface/openai_summarize_comparisons_relabelled_margin
|
| 2 |
+
mode: relabel
|
| 3 |
+
model_name: mnoukhov/pythia410m-tldrprompt-dpo1b-adapter
|
| 4 |
+
dataset_name: mnoukhov/openai_summarize_comparisons_tldrprompt
|
| 5 |
+
eval_split: train
|
| 6 |
+
use_peft: False
|
| 7 |
+
beta: 0.5
|
| 8 |
+
load_in_8bit: False
|
| 9 |
+
bf16: False
|
| 10 |
+
fp16: True
|
| 11 |
+
per_device_eval_batch_size: 8
|
| 12 |
+
warmup_steps: 150
|
code/configs/dpo1b_relabel_generated_pythia410m_fp16.yml
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
output_dir: /home/toolkit/huggingface/openai_summarize_generated_20k_relabelled_margin
|
| 2 |
+
mode: relabel
|
| 3 |
+
model_name: mnoukhov/pythia410m-tldrprompt-dpo1b-adapter
|
| 4 |
+
dataset_name: mnoukhov/openai_summarize_generated_20k
|
| 5 |
+
eval_split: train
|
| 6 |
+
use_peft: False
|
| 7 |
+
beta: 0.5
|
| 8 |
+
load_in_8bit: False
|
| 9 |
+
bf16: False
|
| 10 |
+
fp16: True
|
| 11 |
+
per_device_eval_batch_size: 8
|
| 12 |
+
warmup_steps: 150
|
code/configs/dpo1b_relabel_generated_same_prompts.yml
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
output_dir: /home/toolkit/huggingface/openai_comparisons_20k_regen_and_relabelled
|
| 2 |
+
mode: relabel
|
| 3 |
+
model_name: mnoukhov/pythia410m-tldrprompt-dpo1b-adapter
|
| 4 |
+
dataset_name: arianhosseini/openai_comparisons_20k_regen_and_relabelled
|
| 5 |
+
eval_split: train
|
| 6 |
+
use_peft: False
|
| 7 |
+
beta: 0.5
|
| 8 |
+
load_in_8bit: False
|
| 9 |
+
bf16: False
|
| 10 |
+
fp16: True
|
| 11 |
+
per_device_eval_batch_size: 8
|
| 12 |
+
warmup_steps: 150
|
code/configs/dpo1b_relabel_vllm_generated_pythia410m.yml
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
output_dir: openai_summarize_vllm_generated_20k_label410m
|
| 2 |
+
mode: relabel
|
| 3 |
+
model_name: mnoukhov/pythia410m-tldrprompt-dpo1b-adapter
|
| 4 |
+
dataset_name: mnoukhov/openai_summarize_vllm_generated_20k
|
| 5 |
+
eval_split: train
|
| 6 |
+
use_peft: False
|
| 7 |
+
beta: 0.5
|
| 8 |
+
load_in_8bit: False
|
| 9 |
+
bf16: False
|
| 10 |
+
fp16: True
|
| 11 |
+
per_device_eval_batch_size: 8
|
| 12 |
+
warmup_steps: 150
|
code/configs/dpo1b_test.yml
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_name: /home/toolkit/huggingface/tldr_sft_pythia410m_fp32_trainall_3epochs
|
| 2 |
+
dataset_name: mnoukhov/openai_summarize_comparisons_relabel_pythia1b
|
| 3 |
+
beta: 0.5
|
| 4 |
+
num_train_epochs: 3
|
| 5 |
+
eval_steps: 750
|
| 6 |
+
load_in_8bit: False
|
| 7 |
+
bf16: False
|
| 8 |
+
fp16: True
|
| 9 |
+
learning_rate: 1e-5
|
| 10 |
+
use_peft: True
|
| 11 |
+
lora_all_linear: True
|
| 12 |
+
lora_r: 8
|
| 13 |
+
lora_alpha: 32
|
| 14 |
+
lora_dropout: 0.05
|
| 15 |
+
gradient_accumulation_steps: 4
|
| 16 |
+
per_device_train_batch_size: 4
|
| 17 |
+
warmup_steps: 150
|
| 18 |
+
eval_steps: 10
|
| 19 |
+
save_steps: 10
|
code/configs/dpo1b_vllm_pythia410m.yml
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_name: mnoukhov/pythia410m-tldr-sft
|
| 2 |
+
dataset_name: mnoukhov/openai_summarize_vllm_generated_20k_label410m
|
| 3 |
+
gold_model_name: mnoukhov/pythia1b-sft-rm-tldrprompt
|
| 4 |
+
beta: 0.5
|
| 5 |
+
max_steps: 10000
|
| 6 |
+
eval_steps: 1000
|
| 7 |
+
load_in_8bit: False
|
| 8 |
+
bf16: False
|
| 9 |
+
fp16: True
|
| 10 |
+
learning_rate: 1e-5
|
| 11 |
+
use_peft: True
|
| 12 |
+
lora_all_linear: True
|
| 13 |
+
lora_r: 8
|
| 14 |
+
lora_alpha: 32
|
| 15 |
+
lora_dropout: 0.05
|
| 16 |
+
gradient_accumulation_steps: 4
|
| 17 |
+
per_device_train_batch_size: 4
|
| 18 |
+
warmup_steps: 150
|
code/configs/dpo2_costa_1b_20k_bf16.yml
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## dpo 2
|
| 2 |
+
pseudo_dataset_name: mnoukhov/summarize_from_feedback_tldr3_generated_20k_relabel_pythia1b_dpo_temp0.7_length128
|
| 3 |
+
train_split: train[:1]
|
| 4 |
+
max_prompt_length: 512
|
| 5 |
+
max_target_length: 131
|
| 6 |
+
max_length: 640
|
| 7 |
+
## costa stuff
|
| 8 |
+
model_name: vwxyzjn/EleutherAI_pythia-1b-deduped__sft__tldr
|
| 9 |
+
model_revision: sft__55513__1706646024
|
| 10 |
+
dataset_name: vwxyzjn/summarize_from_feedback_oai_preprocessing_1706381144
|
| 11 |
+
tokenizer_name: EleutherAI/pythia-1b-deduped
|
| 12 |
+
prompt_field: query
|
| 13 |
+
eval_split: validation
|
| 14 |
+
## hub stuff
|
| 15 |
+
push_to_hub: True
|
| 16 |
+
push_to_hub_organization: mnoukhov
|
| 17 |
+
## training stuff
|
| 18 |
+
gold_eval: ppl
|
| 19 |
+
eval_steps: 0.2
|
| 20 |
+
save_steps: 0.2
|
| 21 |
+
beta: 0.5
|
| 22 |
+
max_steps: -1
|
| 23 |
+
num_train_epochs: 1
|
| 24 |
+
load_in_8bit: False
|
| 25 |
+
bf16: True
|
| 26 |
+
fp16: False
|
| 27 |
+
learning_rate: 3e-6
|
| 28 |
+
use_peft: True
|
| 29 |
+
lora_all_linear: True
|
| 30 |
+
lora_r: 8
|
| 31 |
+
lora_alpha: 32
|
| 32 |
+
lora_dropout: 0.05
|
| 33 |
+
gradient_accumulation_steps: 4
|
| 34 |
+
per_device_train_batch_size: 16
|
| 35 |
+
per_device_eval_batch_size: 4
|
| 36 |
+
warmup_steps: 150
|
code/configs/dpo2_costa_1b_20k_fp16.yml
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## dpo 2
|
| 2 |
+
pseudo_dataset_name: mnoukhov/summarize_from_feedback_tldr3_generated_relabel_20k_dpo_costa_1b_fp16.yml_3d94f50_b9ff2
|
| 3 |
+
train_split: train[:1]
|
| 4 |
+
max_prompt_length: 512
|
| 5 |
+
max_target_length: 131
|
| 6 |
+
max_length: 640
|
| 7 |
+
lr_scheduler_type: cosine
|
| 8 |
+
## costa stuff
|
| 9 |
+
model_name: vwxyzjn/EleutherAI_pythia-1b-deduped__sft__tldr
|
| 10 |
+
model_revision: sft__55513__1706646024
|
| 11 |
+
dataset_name: vwxyzjn/summarize_from_feedback_oai_preprocessing_1706381144
|
| 12 |
+
tokenizer_name: EleutherAI/pythia-1b-deduped
|
| 13 |
+
prompt_field: query
|
| 14 |
+
eval_split: validation
|
| 15 |
+
## hub stuff
|
| 16 |
+
push_to_hub: True
|
| 17 |
+
push_to_hub_organization: mnoukhov
|
| 18 |
+
## training stuff
|
| 19 |
+
gold_eval: ppl
|
| 20 |
+
eval_steps: 0.2
|
| 21 |
+
save_steps: 0.2
|
| 22 |
+
beta: 0.05
|
| 23 |
+
max_steps: -1
|
| 24 |
+
num_train_epochs: 2
|
| 25 |
+
load_in_8bit: False
|
| 26 |
+
bf16: False
|
| 27 |
+
fp16: True
|
| 28 |
+
learning_rate: 1e-5
|
| 29 |
+
use_peft: True
|
| 30 |
+
lora_r: 16
|
| 31 |
+
lora_alpha: 32
|
| 32 |
+
lora_dropout: 0.
|
| 33 |
+
gradient_accumulation_steps: 4
|
| 34 |
+
per_device_train_batch_size: 4
|
| 35 |
+
per_device_eval_batch_size: 4
|
code/configs/dpo2_pythia2.8b_tldr.yml
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pseudo_dataset_name: mnoukhov/summarize_from_feedback_tldr3_unlabelled_vllm_dpo_costa_2.8b_bf16.yml_6e799_new
|
| 2 |
+
train_split: train[:1]
|
| 3 |
+
# dpo 2
|
| 4 |
+
eval_first_step: False
|
| 5 |
+
model_name: mnoukhov/EleutherAI_pythia-2.8b-deduped__sft__tldr_55513
|
| 6 |
+
dataset_name: vwxyzjn/summarize_from_feedback_oai_preprocessing_1706381144
|
| 7 |
+
tokenizer_name: EleutherAI/pythia-1b-deduped
|
| 8 |
+
prompt_field: query
|
| 9 |
+
eval_split: validation
|
| 10 |
+
max_prompt_length: 512
|
| 11 |
+
max_target_length: 131
|
| 12 |
+
max_length: 640
|
| 13 |
+
lr_scheduler_type: cosine
|
| 14 |
+
## hub stuff
|
| 15 |
+
push_to_hub: True
|
| 16 |
+
push_to_hub_organization: mnoukhov
|
| 17 |
+
## training stuff
|
| 18 |
+
gold_eval: ppl
|
| 19 |
+
eval_steps: 0.2
|
| 20 |
+
save_steps: 0.2
|
| 21 |
+
beta: 0.05
|
| 22 |
+
max_steps: -1
|
| 23 |
+
num_train_epochs: 1
|
| 24 |
+
load_in_8bit: False
|
| 25 |
+
bf16: True
|
| 26 |
+
fp16: False
|
| 27 |
+
learning_rate: 1e-5
|
| 28 |
+
use_peft: True
|
| 29 |
+
lora_r: 16
|
| 30 |
+
lora_alpha: 32
|
| 31 |
+
lora_dropout: 0.
|
| 32 |
+
gradient_accumulation_steps: 16
|
| 33 |
+
per_device_train_batch_size: 4
|
| 34 |
+
per_device_eval_batch_size: 4
|
code/configs/dpo_1b_bf16.yml
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_name: vwxyzjn/EleutherAI_pythia-1b-deduped__sft__tldr
|
| 2 |
+
model_revision: sft__55513__1706646024
|
| 3 |
+
dataset_name: vwxyzjn/summarize_from_feedback_oai_preprocessing_1706381144
|
| 4 |
+
eval_split: validation
|
| 5 |
+
tokenizer_name: EleutherAI/pythia-1b-deduped
|
| 6 |
+
prompt_field: query
|
| 7 |
+
gold_model_name: vwxyzjn/EleutherAI_pythia-6.9b-deduped__reward__tldr
|
| 8 |
+
gold_model_revision: reward__55513__1706651113
|
| 9 |
+
gold_dataset_name: vwxyzjn/summarize_from_feedback_tldr_3_filtered_oai_preprocessing_1706381144
|
| 10 |
+
gold_prompt_field: query
|
| 11 |
+
gold_eval_split: validation
|
| 12 |
+
strip_prompt: False
|
| 13 |
+
## training stuff
|
| 14 |
+
beta: 0.5
|
| 15 |
+
max_steps: 10000
|
| 16 |
+
eval_steps: 1000
|
| 17 |
+
load_in_8bit: False
|
| 18 |
+
bf16: True
|
| 19 |
+
fp16: False
|
| 20 |
+
learning_rate: 1e-5
|
| 21 |
+
use_peft: True
|
| 22 |
+
lora_all_linear: True
|
| 23 |
+
lora_r: 8
|
| 24 |
+
lora_alpha: 32
|
| 25 |
+
lora_dropout: 0.05
|
| 26 |
+
gradient_accumulation_steps: 16
|
| 27 |
+
per_device_train_batch_size: 4
|
| 28 |
+
warmup_steps: 150
|
code/configs/dpo_1b_fp16.yml
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## costa stuff
|
| 2 |
+
model_name: vwxyzjn/EleutherAI_pythia-1b-deduped__sft__tldr
|
| 3 |
+
model_revision: sft__55513__1706646024
|
| 4 |
+
dataset_name: vwxyzjn/summarize_from_feedback_oai_preprocessing_1706381144
|
| 5 |
+
tokenizer_name: EleutherAI/pythia-1b-deduped
|
| 6 |
+
prompt_field: query
|
| 7 |
+
eval_split: validation
|
| 8 |
+
max_target_length: 128
|
| 9 |
+
## hub stuff
|
| 10 |
+
push_to_hub: True
|
| 11 |
+
push_to_hub_organization: mnoukhov
|
| 12 |
+
## training stuff
|
| 13 |
+
gold_eval: ppl
|
| 14 |
+
eval_steps: 0.2
|
| 15 |
+
save_steps: 0.2
|
| 16 |
+
beta: 0.5
|
| 17 |
+
max_steps: -1
|
| 18 |
+
num_train_epochs: 2
|
| 19 |
+
load_in_8bit: False
|
| 20 |
+
bf16: False
|
| 21 |
+
fp16: True
|
| 22 |
+
learning_rate: 1e-5
|
| 23 |
+
use_peft: True
|
| 24 |
+
lora_all_linear: True
|
| 25 |
+
lora_r: 8
|
| 26 |
+
lora_alpha: 32
|
| 27 |
+
lora_dropout: 0.05
|
| 28 |
+
gradient_accumulation_steps: 4
|
| 29 |
+
per_device_train_batch_size: 4
|
| 30 |
+
per_device_eval_batch_size: 4
|
| 31 |
+
warmup_steps: 150
|
code/configs/dpo_20konly_1b_bf16.yml
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## costa stuff
|
| 2 |
+
model_name: vwxyzjn/EleutherAI_pythia-1b-deduped__sft__tldr
|
| 3 |
+
model_revision: sft__55513__1706646024
|
| 4 |
+
dataset_name: vwxyzjn/summarize_from_feedback_oai_preprocessing_1706381144
|
| 5 |
+
tokenizer_name: EleutherAI/pythia-1b-deduped
|
| 6 |
+
eval_split: validation
|
| 7 |
+
prompt_field: query
|
| 8 |
+
gold_model_name: vwxyzjn/EleutherAI_pythia-6.9b-deduped__reward__tldr
|
| 9 |
+
gold_model_revision: reward__55513__1706651113
|
| 10 |
+
gold_dataset_name: vwxyzjn/summarize_from_feedback_tldr_3_filtered_oai_preprocessing_1706381144
|
| 11 |
+
gold_prompt_field: query
|
| 12 |
+
gold_target_field: reference_response
|
| 13 |
+
gold_eval_split: validation
|
| 14 |
+
strip_prompt: False
|
| 15 |
+
## training stuff
|
| 16 |
+
eval_first_step: False
|
| 17 |
+
pseudo_dataset_name: mnoukhov/summarize_from_feedback_tldr3_generated_20k_relabel_pythia1b_dpo
|
| 18 |
+
beta: 0.5
|
| 19 |
+
max_steps: 10000
|
| 20 |
+
eval_steps: 1000
|
| 21 |
+
load_in_8bit: False
|
| 22 |
+
bf16: True
|
| 23 |
+
fp16: False
|
| 24 |
+
learning_rate: 1e-5
|
| 25 |
+
use_peft: True
|
| 26 |
+
lora_all_linear: True
|
| 27 |
+
lora_r: 8
|
| 28 |
+
lora_alpha: 32
|
| 29 |
+
lora_dropout: 0.05
|
| 30 |
+
gradient_accumulation_steps: 16
|
| 31 |
+
per_device_train_batch_size: 4
|
| 32 |
+
warmup_steps: 150
|
code/configs/dpo_20konly_1b_fp16.yml
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## costa stuff
|
| 2 |
+
model_name: vwxyzjn/EleutherAI_pythia-1b-deduped__sft__tldr
|
| 3 |
+
model_revision: sft__55513__1706646024
|
| 4 |
+
dataset_name: vwxyzjn/summarize_from_feedback_oai_preprocessing_1706381144
|
| 5 |
+
tokenizer_name: EleutherAI/pythia-1b-deduped
|
| 6 |
+
prompt_field: query
|
| 7 |
+
eval_split: validation
|
| 8 |
+
pseudo_dataset_name: mnoukhov/summarize_from_feedback_tldr3_generated_20k_relabel_pythia1b_dpo
|
| 9 |
+
max_target_length: 128
|
| 10 |
+
## hub stuff
|
| 11 |
+
push_to_hub: True
|
| 12 |
+
push_to_hub_organization: mnoukhov
|
| 13 |
+
## training stuff
|
| 14 |
+
gold_eval: ppl
|
| 15 |
+
eval_steps: 0.2
|
| 16 |
+
save_steps: 0.2
|
| 17 |
+
train_split: train[:1]
|
| 18 |
+
beta: 0.5
|
| 19 |
+
max_steps: -1
|
| 20 |
+
num_train_epochs: 5
|
| 21 |
+
load_in_8bit: False
|
| 22 |
+
bf16: False
|
| 23 |
+
fp16: True
|
| 24 |
+
learning_rate: 1e-5
|
| 25 |
+
use_peft: True
|
| 26 |
+
lora_all_linear: True
|
| 27 |
+
lora_r: 8
|
| 28 |
+
lora_alpha: 32
|
| 29 |
+
lora_dropout: 0.05
|
| 30 |
+
gradient_accumulation_steps: 4
|
| 31 |
+
per_device_train_batch_size: 4
|
| 32 |
+
per_device_eval_batch_size: 4
|
| 33 |
+
warmup_steps: 150
|
code/configs/dpo_costa_1b_constantlr_fp16.yml
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## costa stuff
|
| 2 |
+
model_name: vwxyzjn/EleutherAI_pythia-1b-deduped__sft__tldr
|
| 3 |
+
model_revision: sft__55513__1706646024
|
| 4 |
+
dataset_name: vwxyzjn/summarize_from_feedback_oai_preprocessing_1706381144
|
| 5 |
+
tokenizer_name: EleutherAI/pythia-1b-deduped
|
| 6 |
+
prompt_field: query
|
| 7 |
+
eval_split: validation
|
| 8 |
+
max_target_length: 169
|
| 9 |
+
## hub stuff
|
| 10 |
+
push_to_hub: True
|
| 11 |
+
push_to_hub_organization: mnoukhov
|
| 12 |
+
## training stuff
|
| 13 |
+
gold_eval: ppl
|
| 14 |
+
eval_steps: 0.2
|
| 15 |
+
save_steps: 0.2
|
| 16 |
+
beta: 0.5
|
| 17 |
+
max_steps: -1
|
| 18 |
+
num_train_epochs: 1
|
| 19 |
+
load_in_8bit: False
|
| 20 |
+
bf16: False
|
| 21 |
+
fp16: True
|
| 22 |
+
learning_rate: 1e-6
|
| 23 |
+
lr_scheduler_type: constant_with_warmup
|
| 24 |
+
use_peft: True
|
| 25 |
+
lora_all_linear: True
|
| 26 |
+
lora_r: 32
|
| 27 |
+
lora_alpha: 64
|
| 28 |
+
lora_dropout: 0.05
|
| 29 |
+
gradient_accumulation_steps: 4
|
| 30 |
+
per_device_train_batch_size: 4
|
| 31 |
+
per_device_eval_batch_size: 4
|
| 32 |
+
warmup_steps: 150
|
code/configs/dpo_costa_1b_fp16.yml
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## costa stuff
|
| 2 |
+
model_name: vwxyzjn/EleutherAI_pythia-1b-deduped__sft__tldr
|
| 3 |
+
model_revision: sft__55513__1706646024
|
| 4 |
+
dataset_name: vwxyzjn/summarize_from_feedback_oai_preprocessing_1706381144
|
| 5 |
+
tokenizer_name: EleutherAI/pythia-1b-deduped
|
| 6 |
+
prompt_field: query
|
| 7 |
+
eval_split: validation
|
| 8 |
+
max_prompt_length: 512
|
| 9 |
+
max_target_length: 131
|
| 10 |
+
max_length: 640
|
| 11 |
+
lr_scheduler_type: cosine
|
| 12 |
+
## hub stuff
|
| 13 |
+
push_to_hub: True
|
| 14 |
+
push_to_hub_organization: mnoukhov
|
| 15 |
+
## training stuff
|
| 16 |
+
gold_eval: ppl
|
| 17 |
+
eval_steps: 0.2
|
| 18 |
+
save_steps: 0.2
|
| 19 |
+
beta: 0.05
|
| 20 |
+
max_steps: -1
|
| 21 |
+
num_train_epochs: 1
|
| 22 |
+
load_in_8bit: False
|
| 23 |
+
bf16: False
|
| 24 |
+
fp16: True
|
| 25 |
+
learning_rate: 1e-5
|
| 26 |
+
use_peft: True
|
| 27 |
+
lora_r: 16
|
| 28 |
+
lora_alpha: 32
|
| 29 |
+
lora_dropout: 0.
|
| 30 |
+
gradient_accumulation_steps: 4
|
| 31 |
+
per_device_train_batch_size: 4
|
| 32 |
+
per_device_eval_batch_size: 4
|
code/configs/dpo_eval_1b_fp16.yml
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
mode: eval
|
| 2 |
+
push_to_hub: False
|
| 3 |
+
gold_eval: none
|
| 4 |
+
## costa stuff
|
| 5 |
+
model_name: mnoukhov/EleutherAI_pythia-1b-deduped__sft__tldr_dpo_1b_fp16.yml_24e9f83_merged
|
| 6 |
+
model_revision: step2324
|
| 7 |
+
dataset_name: vwxyzjn/summarize_from_feedback_oai_preprocessing_1706381144
|
| 8 |
+
tokenizer_name: EleutherAI/pythia-1b-deduped
|
| 9 |
+
prompt_field: query
|
| 10 |
+
eval_split: validation
|
| 11 |
+
max_target_length: 128
|
| 12 |
+
## hub stuff
|
| 13 |
+
push_to_hub_organization: mnoukhov
|
| 14 |
+
## training stuff
|
| 15 |
+
eval_steps: 0.2
|
| 16 |
+
save_steps: 0.2
|
| 17 |
+
beta: 0.5
|
| 18 |
+
max_steps: -1
|
| 19 |
+
num_train_epochs: 2
|
| 20 |
+
load_in_8bit: False
|
| 21 |
+
bf16: False
|
| 22 |
+
fp16: True
|
| 23 |
+
learning_rate: 1e-5
|
| 24 |
+
use_peft: True
|
| 25 |
+
lora_all_linear: True
|
| 26 |
+
lora_r: 8
|
| 27 |
+
lora_alpha: 32
|
| 28 |
+
lora_dropout: 0.05
|
| 29 |
+
gradient_accumulation_steps: 4
|
| 30 |
+
per_device_train_batch_size: 4
|
| 31 |
+
per_device_eval_batch_size: 4
|
| 32 |
+
warmup_steps: 150
|
code/configs/dpo_eval_costa_1b_bf16.yml
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
mode: eval
|
| 2 |
+
push_to_hub: False
|
| 3 |
+
gold_eval: none
|
| 4 |
+
## costa stuff
|
| 5 |
+
model_name: vwxyzjn/EleutherAI_pythia-1b-deduped__dpo__tldr
|
| 6 |
+
model_revision: dpo__55513__1707379566
|
| 7 |
+
ref_model_name: vwxyzjn/EleutherAI_pythia-1b-deduped__sft__tldr
|
| 8 |
+
ref_model_revision: sft__55513__1706646024
|
| 9 |
+
dataset_name: vwxyzjn/summarize_from_feedback_oai_preprocessing_1706381144
|
| 10 |
+
tokenizer_name: EleutherAI/pythia-1b-deduped
|
| 11 |
+
prompt_field: query
|
| 12 |
+
eval_split: validation
|
| 13 |
+
max_prompt_length: 512
|
| 14 |
+
max_target_length: 169
|
| 15 |
+
max_length: 638
|
| 16 |
+
## hub stuff
|
| 17 |
+
push_to_hub_organization: mnoukhov
|
| 18 |
+
## training stuff
|
| 19 |
+
eval_steps: 0.2
|
| 20 |
+
save_steps: 0.2
|
| 21 |
+
beta: 0.5
|
| 22 |
+
max_steps: -1
|
| 23 |
+
num_train_epochs: 2
|
| 24 |
+
load_in_8bit: False
|
| 25 |
+
bf16: True
|
| 26 |
+
fp16: False
|
| 27 |
+
learning_rate: 1e-5
|
| 28 |
+
use_peft: False
|
| 29 |
+
lora_all_linear: True
|
| 30 |
+
lora_r: 8
|
| 31 |
+
lora_alpha: 32
|
| 32 |
+
lora_dropout: 0.05
|
| 33 |
+
gradient_accumulation_steps: 4
|
| 34 |
+
per_device_train_batch_size: 4
|
| 35 |
+
per_device_eval_batch_size: 4
|
| 36 |
+
warmup_steps: 150
|
code/configs/dpo_eval_costa_1b_fp16.yml
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
mode: eval
|
| 2 |
+
push_to_hub: False
|
| 3 |
+
gold_eval: none
|
| 4 |
+
## costa stuff
|
| 5 |
+
model_name: vwxyzjn/EleutherAI_pythia-1b-deduped__dpo__tldr
|
| 6 |
+
model_revision: dpo__55513__1707379566
|
| 7 |
+
dataset_name: vwxyzjn/summarize_from_feedback_oai_preprocessing_1706381144
|
| 8 |
+
tokenizer_name: EleutherAI/pythia-1b-deduped
|
| 9 |
+
prompt_field: query
|
| 10 |
+
eval_split: validation
|
| 11 |
+
max_prompt_length: 512
|
| 12 |
+
max_target_length: 169
|
| 13 |
+
max_length: 638
|
| 14 |
+
## hub stuff
|
| 15 |
+
push_to_hub_organization: mnoukhov
|
| 16 |
+
## training stuff
|
| 17 |
+
eval_steps: 0.2
|
| 18 |
+
save_steps: 0.2
|
| 19 |
+
beta: 0.5
|
| 20 |
+
max_steps: -1
|
| 21 |
+
num_train_epochs: 2
|
| 22 |
+
load_in_8bit: False
|
| 23 |
+
bf16: False
|
| 24 |
+
fp16: True
|
| 25 |
+
learning_rate: 1e-5
|
| 26 |
+
use_peft: True
|
| 27 |
+
lora_all_linear: True
|
| 28 |
+
lora_r: 8
|
| 29 |
+
lora_alpha: 32
|
| 30 |
+
lora_dropout: 0.05
|
| 31 |
+
gradient_accumulation_steps: 4
|
| 32 |
+
per_device_train_batch_size: 4
|
| 33 |
+
per_device_eval_batch_size: 4
|
| 34 |
+
warmup_steps: 150
|
code/configs/dpo_pythia1b_hh_rlhf.yml
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## costa stuff
|
| 2 |
+
model_name: sophiex/pythia-1b-sft_hh_rlhf
|
| 3 |
+
# model_revision: null
|
| 4 |
+
dataset_name: sophiex/hh-rlhf
|
| 5 |
+
tokenizer_name: EleutherAI/pythia-1b-deduped
|
| 6 |
+
prompt_field: prompt
|
| 7 |
+
eval_split: test
|
| 8 |
+
max_prompt_length: 256
|
| 9 |
+
max_target_length: 256
|
| 10 |
+
max_length: 512
|
| 11 |
+
lr_scheduler_type: cosine
|
| 12 |
+
## hub stuff
|
| 13 |
+
push_to_hub: True
|
| 14 |
+
push_to_hub_organization: sophiex
|
| 15 |
+
## training stuff
|
| 16 |
+
save_strategy: steps
|
| 17 |
+
gold_eval: none
|
| 18 |
+
gold_dataset_name: sophiex/hh-rlhf
|
| 19 |
+
gold_target_field: chosen
|
| 20 |
+
gold_eval_split: test
|
| 21 |
+
eval_steps: 0.2
|
| 22 |
+
save_steps: 0.2
|
| 23 |
+
beta: 0.1
|
| 24 |
+
max_steps: -1
|
| 25 |
+
num_train_epochs: 1
|
| 26 |
+
load_in_8bit: False
|
| 27 |
+
bf16: False
|
| 28 |
+
fp16: True
|
| 29 |
+
learning_rate: 1e-5
|
| 30 |
+
use_peft: True
|
| 31 |
+
lora_r: 16
|
| 32 |
+
lora_alpha: 32
|
| 33 |
+
lora_dropout: 0.
|
| 34 |
+
gradient_accumulation_steps: 4
|
| 35 |
+
per_device_train_batch_size: 4
|
| 36 |
+
per_device_eval_batch_size: 4
|
code/configs/dpo_pythia1b_hh_rlhf_fp16_4V100.yml
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## costa stuff
|
| 2 |
+
model_name: sophiex/pythia-1b-sft_hh_rlhf
|
| 3 |
+
# model_revision: null
|
| 4 |
+
dataset_name: sophiex/hh-rlhf
|
| 5 |
+
tokenizer_name: EleutherAI/pythia-1b-deduped
|
| 6 |
+
prompt_field: prompt
|
| 7 |
+
eval_split: test
|
| 8 |
+
max_prompt_length: 256
|
| 9 |
+
max_target_length: 256
|
| 10 |
+
max_length: 512
|
| 11 |
+
lr_scheduler_type: cosine
|
| 12 |
+
## hub stuff
|
| 13 |
+
push_to_hub: True
|
| 14 |
+
push_to_hub_organization: mnoukhov
|
| 15 |
+
## training stuff
|
| 16 |
+
save_strategy: steps
|
| 17 |
+
gold_eval: ppl
|
| 18 |
+
gold_dataset_name: sophiex/hh-rlhf
|
| 19 |
+
gold_target_field: chosen
|
| 20 |
+
gold_eval_split: test
|
| 21 |
+
eval_steps: 0.2
|
| 22 |
+
save_steps: 0.2
|
| 23 |
+
beta: 0.1
|
| 24 |
+
max_steps: -1
|
| 25 |
+
num_train_epochs: 1
|
| 26 |
+
load_in_8bit: False
|
| 27 |
+
bf16: False
|
| 28 |
+
fp16: True
|
| 29 |
+
learning_rate: 1e-5
|
| 30 |
+
use_peft: True
|
| 31 |
+
lora_r: 16
|
| 32 |
+
lora_alpha: 32
|
| 33 |
+
lora_dropout: 0.
|
| 34 |
+
gradient_accumulation_steps: 4
|
| 35 |
+
per_device_train_batch_size: 4
|
| 36 |
+
per_device_eval_batch_size: 4
|
code/configs/dpo_pythia2.8b_hh_rlhf_fp16_4V100.yml
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## costa stuff
|
| 2 |
+
model_name: sophiex/pythia-2.8b-sft_hh_rlhf
|
| 3 |
+
# model_revision: null
|
| 4 |
+
dataset_name: sophiex/hh-rlhf
|
| 5 |
+
tokenizer_name: EleutherAI/pythia-2.8b-deduped
|
| 6 |
+
prompt_field: prompt
|
| 7 |
+
eval_split: test
|
| 8 |
+
max_prompt_length: 256
|
| 9 |
+
max_target_length: 256
|
| 10 |
+
max_length: 512
|
| 11 |
+
lr_scheduler_type: cosine
|
| 12 |
+
## hub stuff
|
| 13 |
+
push_to_hub: True
|
| 14 |
+
push_to_hub_organization: mnoukhov
|
| 15 |
+
## training stuff
|
| 16 |
+
save_strategy: steps
|
| 17 |
+
gold_eval: ppl
|
| 18 |
+
gold_dataset_name: sophiex/hh-rlhf
|
| 19 |
+
gold_target_field: chosen
|
| 20 |
+
gold_eval_split: test
|
| 21 |
+
eval_steps: 0.2
|
| 22 |
+
save_steps: 0.2
|
| 23 |
+
beta: 0.1
|
| 24 |
+
max_steps: -1
|
| 25 |
+
num_train_epochs: 1
|
| 26 |
+
load_in_8bit: False
|
| 27 |
+
bf16: False
|
| 28 |
+
fp16: True
|
| 29 |
+
learning_rate: 1e-5
|
| 30 |
+
use_peft: True
|
| 31 |
+
lora_r: 16
|
| 32 |
+
lora_alpha: 32
|
| 33 |
+
lora_dropout: 0.
|
| 34 |
+
gradient_accumulation_steps: 4
|
| 35 |
+
per_device_train_batch_size: 4
|
| 36 |
+
per_device_eval_batch_size: 4
|
code/configs/dpo_relabel.yml
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
output_dir: summarize_from_feedback_tldr3_generated_20k_relabel_pythia1b_dpo_temp0.7_length128
|
| 2 |
+
mode: relabel
|
| 3 |
+
model_name: vwxyzjn/EleutherAI_pythia-1b-deduped__dpo__tldr
|
| 4 |
+
model_revision: dpo__55513__1707379566
|
| 5 |
+
ref_model_name: vwxyzjn/EleutherAI_pythia-1b-deduped__sft__tldr
|
| 6 |
+
ref_model_revision: sft__55513__1706646024
|
| 7 |
+
tokenizer_name: EleutherAI/pythia-1b-deduped
|
| 8 |
+
dataset_name: mnoukhov/summarize_from_feedback_tldr3_generated_20k_vllm_pythia1b_dpo_temp0.7_length128
|
| 9 |
+
max_prompt_length: 512
|
| 10 |
+
max_target_length: 128
|
| 11 |
+
max_length: 640
|
| 12 |
+
eval_split: train
|
| 13 |
+
use_peft: False
|
| 14 |
+
beta: 0.5
|
| 15 |
+
load_in_8bit: False
|
| 16 |
+
bf16: True
|
| 17 |
+
fp16: False
|
| 18 |
+
per_device_eval_batch_size: 8
|
| 19 |
+
warmup_steps: 150
|
code/configs/dpo_relabel_summarize_generated_1b_dpo.yml
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
output_dir: summarize_from_feedback_tldr3_generated_20k_relabel_pythia1b_dpo_temp0.7_length128
|
| 2 |
+
mode: relabel
|
| 3 |
+
model_name: vwxyzjn/EleutherAI_pythia-1b-deduped__dpo__tldr
|
| 4 |
+
model_revision: dpo__55513__1707379566
|
| 5 |
+
ref_model_name: vwxyzjn/EleutherAI_pythia-1b-deduped__sft__tldr
|
| 6 |
+
ref_model_revision: sft__55513__1706646024
|
| 7 |
+
tokenizer_name: EleutherAI/pythia-1b-deduped
|
| 8 |
+
dataset_name: mnoukhov/summarize_from_feedback_tldr3_generated_20k_vllm_pythia1b_dpo_temp0.7_length128
|
| 9 |
+
max_prompt_length: 512
|
| 10 |
+
max_target_length: 128
|
| 11 |
+
max_length: 640
|
| 12 |
+
eval_split: train
|
| 13 |
+
use_peft: False
|
| 14 |
+
beta: 0.5
|
| 15 |
+
load_in_8bit: False
|
| 16 |
+
bf16: True
|
| 17 |
+
fp16: False
|
| 18 |
+
per_device_eval_batch_size: 8
|
| 19 |
+
warmup_steps: 150
|
code/configs/dpo_test.yml
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
train_split: train[:1000]
|
| 2 |
+
eval_split: validation[:10]
|
| 3 |
+
##
|
| 4 |
+
model_name: vwxyzjn/EleutherAI_pythia-1b-deduped__sft__tldr
|
| 5 |
+
model_revision: sft__55513__1706646024
|
| 6 |
+
dataset_name: vwxyzjn/summarize_from_feedback_oai_preprocessing_1706381144
|
| 7 |
+
prompt_field: query
|
| 8 |
+
gold_eval: ppl
|
| 9 |
+
beta: 0.5
|
| 10 |
+
num_train_epochs: 3
|
| 11 |
+
eval_steps: 750
|
| 12 |
+
load_in_8bit: False
|
| 13 |
+
bf16: False
|
| 14 |
+
fp16: True
|
| 15 |
+
learning_rate: 1e-5
|
| 16 |
+
use_peft: True
|
| 17 |
+
lora_r: 8
|
| 18 |
+
lora_alpha: 32
|
| 19 |
+
lora_dropout: 0.05
|
| 20 |
+
gradient_accumulation_steps: 4
|
| 21 |
+
per_device_train_batch_size: 4
|
| 22 |
+
warmup_steps: 150
|
| 23 |
+
save_steps: 100
|
| 24 |
+
eval_first_step: False
|