mjwong commited on
Commit
53825d0
·
verified ·
1 Parent(s): bf56f64

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +122 -3
README.md CHANGED
@@ -1,3 +1,122 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - multilingual
4
+ - en
5
+ - ar
6
+ - bg
7
+ - de
8
+ - el
9
+ - es
10
+ - fr
11
+ - hi
12
+ - ru
13
+ - sw
14
+ - th
15
+ - tr
16
+ - ur
17
+ - vi
18
+ - zh
19
+ license: mit
20
+ datasets:
21
+ - xnli
22
+ pipeline_tag: zero-shot-classification
23
+ base_model: Alibaba-NLP/gte-multilingual-base
24
+ model-index:
25
+ - name: gte-multilingual-base-xnli
26
+ results: []
27
+ ---
28
+
29
+ # gte-multilingual-base-xnli
30
+
31
+ This model is a fine-tuned version of [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) on the XNLI dataset.
32
+
33
+ ## Model description
34
+
35
+ [mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval](https://arxiv.org/pdf/2407.19669)
36
+
37
+ ## How to use the model
38
+
39
+ ### With the zero-shot classification pipeline
40
+
41
+ The model can be loaded with the `zero-shot-classification` pipeline like so:
42
+
43
+ ```python
44
+ from transformers import pipeline
45
+ model = "mjwong/gte-multilingual-base-xnli"
46
+ tokenizer = AutoTokenizer.from_pretrained(model)
47
+ classifier = pipeline("zero-shot-classification",
48
+ model=model,
49
+ tokenizer=tokenizer,
50
+ trust_remote_code=True
51
+ )
52
+ ```
53
+
54
+ You can then use this pipeline to classify sequences into any of the class names you specify.
55
+
56
+ ```python
57
+ sequence_to_classify = "one day I will see the world"
58
+ candidate_labels = ['travel', 'cooking', 'dancing']
59
+ classifier(sequence_to_classify, candidate_labels)
60
+ ```
61
+
62
+ If more than one candidate label can be correct, pass `multi_class=True` to calculate each class independently:
63
+
64
+ ```python
65
+ candidate_labels = ['travel', 'cooking', 'dancing', 'exploration']
66
+ classifier(sequence_to_classify, candidate_labels, multi_class=True)
67
+ ```
68
+
69
+ ### With manual PyTorch
70
+
71
+ The model can also be applied on NLI tasks like so:
72
+
73
+ ```python
74
+ import torch
75
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
76
+ # device = "cuda:0" or "cpu"
77
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
78
+ model_name = "mjwong/gte-multilingual-base-xnli"
79
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
80
+ model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
81
+ premise = "But I thought you'd sworn off coffee."
82
+ hypothesis = "I thought that you vowed to drink more coffee."
83
+ input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
84
+ output = model(input["input_ids"].to(device))
85
+ prediction = torch.softmax(output["logits"][0], -1).tolist()
86
+ label_names = ["entailment", "neutral", "contradiction"]
87
+ prediction = {name: round(float(pred) * 100, 2) for pred, name in zip(prediction, label_names)}
88
+ print(prediction)
89
+ ```
90
+
91
+ ### Eval results
92
+ The model was evaluated using the XNLI test sets on 15 languages: English (en), Arabic (ar), Bulgarian (bg), German (de), Greek (el), Spanish (es), French (fr), Hindi (hi), Russian (ru), Swahili (sw), Thai (th), Turkish (tr), Urdu (ur), Vietnam (vi) and Chinese (zh). The metric used is accuracy.
93
+
94
+ |Datasets|en|ar|bg|de|el|es|fr|hi|ru|sw|th|tr|ur|vi|zh|
95
+ | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
96
+ |[gte-multilingual-base-xnli](https://huggingface.co/mjwong/gte-multilingual-base-xnli)|0.854|0.767|0.811|0.798|0.801|0.820|0.818|0.753|0.792|0.719|0.766|0.769|0.701|0.799|0.798|
97
+ |[gte-multilingual-base-xnli-anli](https://huggingface.co/mjwong/gte-multilingual-base-xnli-anli)|0.843|0.738|0.793|0.773|0.776|0.801|0.788|0.727|0.775|0.689|0.746|0.747|0.687|0.773|0.779|
98
+
99
+ The model was also evaluated using the dev sets for MultiNLI and test sets for ANLI. The metric used is accuracy.
100
+
101
+ |Datasets|mnli_dev_m|mnli_dev_mm|anli_test_r1|anli_test_r2|anli_test_r3|
102
+ | :---: | :---: | :---: | :---: | :---: | :---: |
103
+ |[gte-multilingual-base-xnli](https://huggingface.co/mjwong/gte-multilingual-base-xnli)|0.852|0.852|0.295|0.292|0.336|
104
+ |[gte-multilingual-base-xnli-anli](https://huggingface.co/mjwong/gte-multilingual-base-xnli-anli)|0.834|0.837|0.567|0.445|0.443|
105
+
106
+ ### Training hyperparameters
107
+
108
+ The following hyperparameters were used during training:
109
+
110
+ - learning_rate: 2e-05
111
+ - train_batch_size: 16
112
+ - eval_batch_size: 16
113
+ - seed: 42
114
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
115
+ - lr_scheduler_type: linear
116
+ - lr_scheduler_warmup_ratio: 0.1
117
+
118
+ ### Framework versions
119
+ - Transformers 4.41.0
120
+ - Pytorch 2.6.0+cu124
121
+ - Datasets 3.2.0
122
+ - Tokenizers 0.19.1