luisml77 commited on
Commit
f1feee4
·
verified ·
1 Parent(s): 7297d34

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +23 -5
README.md CHANGED
@@ -1,8 +1,26 @@
1
- # RSRefSeg Checkpoints
2
 
3
- This repository hosts two SigLIP2 + SAM checkpoints from the “Generalized Referring Expression Segmentation on Aerial Photos” project:
4
 
5
- - **`rsrefseg_combined.pt`** — trained on all five datasets (Aerial-D, RefSegRS, RRSIS-D, NWPU-Refer, Urban1960SatSeg) using the RSRefSeg-L configuration with `facebook/sam-vit-large`.
6
- - **`rsrefseg_aerial-d.pt`** — trained exclusively on the Aerial-D dataset with the standard RSRefSeg (SAM ViT-Base) setup.
7
 
8
- Both checkpoints expect the same tokenizer/text encoder as the training codebase and can be evaluated with `rsrefseg/test.py`.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # RSRefSeg Model Checkpoints
2
 
3
+ Trained SigLIP2 + SAM checkpoints for referring expression segmentation on aerial imagery from **[The Aerial-D Dataset](https://huggingface.co/datasets/luisml77/aerial-d)**.
4
 
5
+ ## Models
 
6
 
7
+ - **`rsrefseg_combined.pt`** Trained on 5 datasets (Aerial-D + RefSegRS + RRSIS-D + NWPU-Refer + Urban1960SatSeg). Uses RSRefSeg-L with `facebook/sam-vit-large`.
8
+ - **`rsrefseg_aerial-d.pt`** — Trained exclusively on Aerial-D. Uses RSRefSeg-Base with `facebook/sam-vit-base`.
9
+
10
+ ## Usage
11
+
12
+ ```python
13
+ # Load and test with the codebase
14
+ from model import SigLipSamSegmentator
15
+
16
+ model = SigLipSamSegmentator(checkpoint_path="rsrefseg_combined.pt")
17
+ mask = model.segment(image, "the building in the top left")
18
+ ```
19
+
20
+ See training/evaluation code at **[GitHub](https://github.com/luisml77/aerialseg)**.
21
+
22
+ ## Links
23
+
24
+ - **[📊 Dataset](https://huggingface.co/datasets/luisml77/aerial-d)** - Aerial-D dataset
25
+ - **[💻 Code](https://github.com/luisml77/aerialseg)** - Training and evaluation scripts
26
+ - **[🌐 Project](https://luispl77.github.io/aerial-d/)** - Project page