Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,77 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
base_model:
|
| 4 |
+
- deepseek-ai/DeepSeek-R1
|
| 5 |
+
tags:
|
| 6 |
+
- ik_llama.cpp
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
Unfortunately there are some issues with tokenizer. I tried using the model and it is coherent but I have no idea if it affects the quality. I will probably try to make an imatrix myself later on and requant it if it is the imatrix issue.
|
| 10 |
+
|
| 11 |
+
IQ2_KS quant of DeepSeek-R1 I made for my 192GB DDR5 + 3090/4090. Done according to:
|
| 12 |
+
|
| 13 |
+
<details>
|
| 14 |
+
|
| 15 |
+
<summary>👈 Secret Recipe</summary>
|
| 16 |
+
|
| 17 |
+
```bash
|
| 18 |
+
#!/usr/bin/env bash
|
| 19 |
+
|
| 20 |
+
custom="
|
| 21 |
+
# First 3 dense layers (0-3) (GPU)
|
| 22 |
+
# Except blk.*.attn_k_b.weight is not divisible by 256 so only supports qN_0
|
| 23 |
+
blk\.[0-2]\.attn_k_b.*=q4_0
|
| 24 |
+
blk\.[0-2]\.attn_.*=iq4_ks
|
| 25 |
+
blk\.[0-2]\.ffn_down.*=iq4_ks
|
| 26 |
+
blk\.[0-2]\.ffn_(gate|up).*=iq4_ks
|
| 27 |
+
blk\.[0-2]\..*=iq4_ks
|
| 28 |
+
|
| 29 |
+
# All attention, norm weights, and bias tensors for MoE layers (3-60) (GPU)
|
| 30 |
+
# Except blk.*.attn_k_b.weight is not divisible by 256 so only supports qN_0
|
| 31 |
+
blk\.[3-9]\.attn_k_b.*=q4_0
|
| 32 |
+
blk\.[1-5][0-9]\.attn_k_b.*=q4_0
|
| 33 |
+
blk\.60\.attn_k_b.*=q4_0
|
| 34 |
+
|
| 35 |
+
blk\.[3-9]\.attn_.*=iq4_ks
|
| 36 |
+
blk\.[1-5][0-9]\.attn_.*=iq4_ks
|
| 37 |
+
blk\.60\.attn_.*=iq4_ks
|
| 38 |
+
|
| 39 |
+
# Shared Expert (3-60) (GPU)
|
| 40 |
+
blk\.[3-9]\.ffn_down_shexp\.weight=iq4_ks
|
| 41 |
+
blk\.[1-5][0-9]\.ffn_down_shexp\.weight=iq4_ks
|
| 42 |
+
blk\.60\.ffn_down_shexp\.weight=iq4_ks
|
| 43 |
+
|
| 44 |
+
blk\.[3-9]\.ffn_(gate|up)_shexp\.weight=iq4_ks
|
| 45 |
+
blk\.[1-5][0-9]\.ffn_(gate|up)_shexp\.weight=iq4_ks
|
| 46 |
+
blk\.60\.ffn_(gate|up)_shexp\.weight=iq4_ks
|
| 47 |
+
|
| 48 |
+
# Routed Experts (3-60) (CPU)
|
| 49 |
+
blk\.[3-9]\.ffn_down_exps\.weight=iq2_k
|
| 50 |
+
blk\.[1-5][0-9]\.ffn_down_exps\.weight=iq2_k
|
| 51 |
+
blk\.60\.ffn_down_exps\.weight=iq2_k
|
| 52 |
+
|
| 53 |
+
blk\.[3-9]\.ffn_(gate|up)_exps\.weight=iq2_ks
|
| 54 |
+
blk\.[1-5][0-9]\.ffn_(gate|up)_exps\.weight=iq2_ks
|
| 55 |
+
blk\.60\.ffn_(gate|up)_exps\.weight=iq2_ks
|
| 56 |
+
|
| 57 |
+
# Token embedding and output tensors (GPU)
|
| 58 |
+
token_embd\.weight=iq4_k
|
| 59 |
+
output\.weight=Q8_0
|
| 60 |
+
```
|
| 61 |
+
</details>
|
| 62 |
+
|
| 63 |
+
## Prompt format
|
| 64 |
+
|
| 65 |
+
```
|
| 66 |
+
<|begin▁of▁sentence|>{system_prompt}<|User|>{prompt}<|Assistant|><|end▁of▁sentence|><|Assistant|>
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
## `ik_llama.cpp` quantizations of DeepSeek-V3-0324
|
| 72 |
+
|
| 73 |
+
NOTE: These quants **MUST** be run using the `llama.cpp` fork, [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp)
|
| 74 |
+
|
| 75 |
+
Credits to @ubergarm for his DeepSeek quant recipes for which these quants were based on.
|
| 76 |
+
|
| 77 |
+
Credits to @ggfhez for his bf16 upload.
|