--- library_name: transformers license: gemma base_model: google/paligemma2-3b-pt-448 tags: - generated_from_trainer model-index: - name: paligemma-architecture results: [] --- # paligemma-architecture This model is a fine-tuned version of [google/paligemma2-3b-pt-448](https://huggingface.co/google/paligemma2-3b-pt-448) on a custom architecture dataset. ## Training procedure Followed the [notebook from smol-vision](https://github.com/merveenoyan/smol-vision/blob/main/Fine_tune_PaliGemma.ipynb), adjusted dataset loading and some parameters. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 4 ### Training results TrainOutput(global_step=352, training_loss=7.797419488430023, metrics={'train_runtime': 1653.6164, 'train_samples_per_second': 1.705, 'train_steps_per_second': 0.213, 'total_flos': 5.772661476596784e+16, 'train_loss': 7.797419488430023, 'epoch': 3.9645390070921986}) ### Framework versions - Transformers 4.50.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.4.0 - Tokenizers 0.21.0