dev: uploaded model files
Browse files- cat_dog_classifier.bin +3 -0
- config.json +8 -0
- model.py +13 -0
- quickdraw_data/cat.npy +3 -0
- quickdraw_data/dog.npy +3 -0
- requirements.txt +6 -0
- sample_predictions.png +0 -0
- train_cat_dog_classifier.py +310 -0
cat_dog_classifier.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6be6dd4dbb80eb2824563dd9237b63a582a57482130e0494642e4e06ece39728
|
| 3 |
+
size 1685764
|
config.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"batch_size": 64,
|
| 3 |
+
"num_epochs": 5,
|
| 4 |
+
"learning_rate": 0.001,
|
| 5 |
+
"model_save_path": "cat_dog_classifier.bin",
|
| 6 |
+
"data_path": "quickdraw_data",
|
| 7 |
+
"num_samples": 5000
|
| 8 |
+
}
|
model.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn as nn
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
class SimpleModel(nn.Module):
|
| 5 |
+
def __init__(self):
|
| 6 |
+
super(SimpleModel, self).__init__()
|
| 7 |
+
self.fc1 = nn.Linear(784, 128)
|
| 8 |
+
self.fc2 = nn.Linear(128, 2)
|
| 9 |
+
|
| 10 |
+
def forward(self, x):
|
| 11 |
+
x = torch.relu(self.fc1(x))
|
| 12 |
+
x = self.fc2(x)
|
| 13 |
+
return x
|
quickdraw_data/cat.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:21a281839d3f2eef601d57d2338a4eafdf24649f8d0a0e42d3ec3e595911463e
|
| 3 |
+
size 96590448
|
quickdraw_data/dog.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:72f95508d440976a075e7098557647bbdeaea7a06c63889215c5b87fbf82ea2c
|
| 3 |
+
size 119292736
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==2.0.0
|
| 2 |
+
numpy==1.24.3
|
| 3 |
+
requests==2.31.0
|
| 4 |
+
Pillow==9.4.0
|
| 5 |
+
matplotlib==3.8.0
|
| 6 |
+
scikit-learn==1.3.0
|
sample_predictions.png
ADDED
|
train_cat_dog_classifier.py
ADDED
|
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
from torch.utils.data import TensorDataset, DataLoader, random_split
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
import torch.optim as optim
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import requests
|
| 11 |
+
import matplotlib.pyplot as plt
|
| 12 |
+
|
| 13 |
+
# Ensure that matplotlib does not try to open a window (useful if running on a server)
|
| 14 |
+
import matplotlib
|
| 15 |
+
matplotlib.use('Agg')
|
| 16 |
+
|
| 17 |
+
# Check if CUDA is available
|
| 18 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 19 |
+
print(f'Using device: {device}')
|
| 20 |
+
|
| 21 |
+
def load_config(config_file='config.json'):
|
| 22 |
+
"""
|
| 23 |
+
Loads configuration parameters from a JSON file.
|
| 24 |
+
Args:
|
| 25 |
+
config_file (str): Path to the JSON config file.
|
| 26 |
+
Returns:
|
| 27 |
+
config (dict): Dictionary containing configuration parameters.
|
| 28 |
+
"""
|
| 29 |
+
with open(config_file, 'r') as f:
|
| 30 |
+
return json.load(f)
|
| 31 |
+
|
| 32 |
+
def download_quickdraw_data():
|
| 33 |
+
"""
|
| 34 |
+
Downloads 'cat.npy' and 'dog.npy' files from the Quick, Draw! dataset.
|
| 35 |
+
"""
|
| 36 |
+
os.makedirs('quickdraw_data', exist_ok=True)
|
| 37 |
+
base_url = 'https://storage.googleapis.com/quickdraw_dataset/full/numpy_bitmap/'
|
| 38 |
+
|
| 39 |
+
categories = ['cat', 'dog']
|
| 40 |
+
for category in categories:
|
| 41 |
+
url = f"{base_url}{category}.npy"
|
| 42 |
+
save_path = os.path.join('quickdraw_data', f"{category}.npy")
|
| 43 |
+
|
| 44 |
+
if os.path.exists(save_path):
|
| 45 |
+
print(f"{category}.npy already exists, skipping download.")
|
| 46 |
+
continue
|
| 47 |
+
|
| 48 |
+
print(f"Downloading {category}.npy...")
|
| 49 |
+
response = requests.get(url, stream=True)
|
| 50 |
+
if response.status_code == 200:
|
| 51 |
+
with open(save_path, 'wb') as f:
|
| 52 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 53 |
+
f.write(chunk)
|
| 54 |
+
print(f"Downloaded {category}.npy")
|
| 55 |
+
else:
|
| 56 |
+
print(f"Failed to download {category}.npy. Status code: {response.status_code}")
|
| 57 |
+
|
| 58 |
+
def load_and_preprocess_data(num_samples=5000):
|
| 59 |
+
"""
|
| 60 |
+
Loads and preprocesses the data for 'cat' and 'dog' categories.
|
| 61 |
+
Args:
|
| 62 |
+
num_samples (int): Number of samples to load for each category.
|
| 63 |
+
Returns:
|
| 64 |
+
train_loader, test_loader: DataLoaders for training and testing.
|
| 65 |
+
"""
|
| 66 |
+
# Load data
|
| 67 |
+
cat_data = np.load('quickdraw_data/cat.npy')
|
| 68 |
+
dog_data = np.load('quickdraw_data/dog.npy')
|
| 69 |
+
|
| 70 |
+
# Limit the number of samples
|
| 71 |
+
cat_data = cat_data[:num_samples]
|
| 72 |
+
dog_data = dog_data[:num_samples]
|
| 73 |
+
|
| 74 |
+
# Create labels: 0 for cat, 1 for dog
|
| 75 |
+
cat_labels = np.zeros(len(cat_data), dtype=np.int64)
|
| 76 |
+
dog_labels = np.ones(len(dog_data), dtype=np.int64)
|
| 77 |
+
|
| 78 |
+
# Combine data and labels
|
| 79 |
+
data = np.concatenate((cat_data, dog_data), axis=0)
|
| 80 |
+
labels = np.concatenate((cat_labels, dog_labels), axis=0)
|
| 81 |
+
|
| 82 |
+
# Normalize data
|
| 83 |
+
data = data.astype('float32') / 255.0
|
| 84 |
+
|
| 85 |
+
# Reshape data for PyTorch: (batch_size, channels, height, width)
|
| 86 |
+
data = data.reshape(-1, 1, 28, 28)
|
| 87 |
+
|
| 88 |
+
# Convert to PyTorch tensors
|
| 89 |
+
data_tensor = torch.tensor(data)
|
| 90 |
+
labels_tensor = torch.tensor(labels)
|
| 91 |
+
|
| 92 |
+
# Create a TensorDataset
|
| 93 |
+
dataset = TensorDataset(data_tensor, labels_tensor)
|
| 94 |
+
|
| 95 |
+
# Split dataset into training and testing sets (80% train, 20% test)
|
| 96 |
+
train_size = int(0.8 * len(dataset))
|
| 97 |
+
test_size = len(dataset) - train_size
|
| 98 |
+
|
| 99 |
+
train_dataset, test_dataset = random_split(dataset, [train_size, test_size])
|
| 100 |
+
|
| 101 |
+
# Create DataLoaders
|
| 102 |
+
config = load_config()
|
| 103 |
+
batch_size = config['batch_size']
|
| 104 |
+
|
| 105 |
+
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
| 106 |
+
test_loader = DataLoader(test_dataset, batch_size=batch_size)
|
| 107 |
+
|
| 108 |
+
return train_loader, test_loader
|
| 109 |
+
|
| 110 |
+
class SimpleCNN(nn.Module):
|
| 111 |
+
"""
|
| 112 |
+
Defines a simple Convolutional Neural Network for binary classification.
|
| 113 |
+
"""
|
| 114 |
+
def __init__(self):
|
| 115 |
+
super(SimpleCNN, self).__init__()
|
| 116 |
+
# Convolutional layers
|
| 117 |
+
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1)
|
| 118 |
+
self.pool = nn.MaxPool2d(2, 2)
|
| 119 |
+
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
|
| 120 |
+
# Fully connected layers
|
| 121 |
+
self.fc1 = nn.Linear(64 * 7 * 7, 128)
|
| 122 |
+
self.fc2 = nn.Linear(128, 2) # 2 output classes: cat and dog
|
| 123 |
+
|
| 124 |
+
def forward(self, x):
|
| 125 |
+
x = F.relu(self.conv1(x)) # Convolutional layer 1
|
| 126 |
+
x = self.pool(x) # Max pooling
|
| 127 |
+
x = F.relu(self.conv2(x)) # Convolutional layer 2
|
| 128 |
+
x = self.pool(x) # Max pooling
|
| 129 |
+
x = x.view(-1, 64 * 7 * 7) # Flatten
|
| 130 |
+
x = F.relu(self.fc1(x)) # Fully connected layer 1
|
| 131 |
+
x = self.fc2(x) # Output layer
|
| 132 |
+
return x
|
| 133 |
+
|
| 134 |
+
def train_model(model, train_loader, num_epochs=5, learning_rate=0.001):
|
| 135 |
+
"""
|
| 136 |
+
Trains the model using the training DataLoader.
|
| 137 |
+
Args:
|
| 138 |
+
model: The neural network model to train.
|
| 139 |
+
train_loader: DataLoader for the training data.
|
| 140 |
+
num_epochs (int): Number of epochs to train.
|
| 141 |
+
learning_rate (float): Learning rate for the optimizer.
|
| 142 |
+
"""
|
| 143 |
+
criterion = nn.CrossEntropyLoss()
|
| 144 |
+
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
| 145 |
+
|
| 146 |
+
model.train()
|
| 147 |
+
for epoch in range(num_epochs):
|
| 148 |
+
running_loss = 0.0
|
| 149 |
+
|
| 150 |
+
for images, labels in train_loader:
|
| 151 |
+
images = images.to(device)
|
| 152 |
+
labels = labels.to(device)
|
| 153 |
+
|
| 154 |
+
# Zero the parameter gradients
|
| 155 |
+
optimizer.zero_grad()
|
| 156 |
+
|
| 157 |
+
# Forward pass
|
| 158 |
+
outputs = model(images)
|
| 159 |
+
loss = criterion(outputs, labels)
|
| 160 |
+
|
| 161 |
+
# Backward pass and optimize
|
| 162 |
+
loss.backward()
|
| 163 |
+
optimizer.step()
|
| 164 |
+
|
| 165 |
+
running_loss += loss.item() * images.size(0)
|
| 166 |
+
|
| 167 |
+
epoch_loss = running_loss / len(train_loader.dataset)
|
| 168 |
+
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {epoch_loss:.4f}')
|
| 169 |
+
|
| 170 |
+
def evaluate_model(model, test_loader):
|
| 171 |
+
"""
|
| 172 |
+
Evaluates the model on the test DataLoader.
|
| 173 |
+
Args:
|
| 174 |
+
model: The trained neural network model.
|
| 175 |
+
test_loader: DataLoader for the test data.
|
| 176 |
+
"""
|
| 177 |
+
model.eval()
|
| 178 |
+
correct = 0
|
| 179 |
+
total = 0
|
| 180 |
+
|
| 181 |
+
with torch.no_grad():
|
| 182 |
+
for images, labels in test_loader:
|
| 183 |
+
images = images.to(device)
|
| 184 |
+
labels = labels.to(device)
|
| 185 |
+
|
| 186 |
+
outputs = model(images)
|
| 187 |
+
_, predicted = torch.max(outputs.data, 1)
|
| 188 |
+
|
| 189 |
+
total += labels.size(0)
|
| 190 |
+
correct += (predicted == labels).sum().item()
|
| 191 |
+
|
| 192 |
+
accuracy = 100 * correct / total
|
| 193 |
+
print(f'Test Accuracy: {accuracy:.2f}%')
|
| 194 |
+
|
| 195 |
+
def save_model(model, filepath='cat_dog_classifier.pth'):
|
| 196 |
+
"""
|
| 197 |
+
Saves the trained model to a file.
|
| 198 |
+
Args:
|
| 199 |
+
model: The trained neural network model.
|
| 200 |
+
filepath (str): The path where the model will be saved.
|
| 201 |
+
"""
|
| 202 |
+
torch.save(model.state_dict(), filepath)
|
| 203 |
+
print(f'Model saved to {filepath}')
|
| 204 |
+
|
| 205 |
+
def load_model(model, filepath='cat_dog_classifier.pth'):
|
| 206 |
+
"""
|
| 207 |
+
Loads the model parameters from a file.
|
| 208 |
+
Args:
|
| 209 |
+
model: The neural network model to load parameters into.
|
| 210 |
+
filepath (str): The path to the saved model file.
|
| 211 |
+
"""
|
| 212 |
+
model.load_state_dict(torch.load(filepath, map_location=device))
|
| 213 |
+
model.to(device)
|
| 214 |
+
print(f'Model loaded from {filepath}')
|
| 215 |
+
|
| 216 |
+
def predict_image(model, image):
|
| 217 |
+
"""
|
| 218 |
+
Predicts the class of a single image.
|
| 219 |
+
Args:
|
| 220 |
+
model: The trained neural network model.
|
| 221 |
+
image: A PIL Image or NumPy array.
|
| 222 |
+
Returns:
|
| 223 |
+
prediction (str): The predicted class label ('cat' or 'dog').
|
| 224 |
+
"""
|
| 225 |
+
# Preprocess the image
|
| 226 |
+
if isinstance(image, Image.Image):
|
| 227 |
+
image = image.resize((28, 28)).convert('L')
|
| 228 |
+
image = np.array(image).astype('float32') / 255.0
|
| 229 |
+
elif isinstance(image, np.ndarray):
|
| 230 |
+
if image.shape != (28, 28):
|
| 231 |
+
image = Image.fromarray(image).resize((28, 28)).convert('L')
|
| 232 |
+
image = np.array(image).astype('float32') / 255.0
|
| 233 |
+
else:
|
| 234 |
+
raise ValueError("Image must be a PIL Image or NumPy array.")
|
| 235 |
+
|
| 236 |
+
image = image.reshape(1, 1, 28, 28)
|
| 237 |
+
image_tensor = torch.tensor(image).to(device)
|
| 238 |
+
|
| 239 |
+
# Get prediction
|
| 240 |
+
model.eval()
|
| 241 |
+
with torch.no_grad():
|
| 242 |
+
output = model(image_tensor)
|
| 243 |
+
_, predicted = torch.max(output.data, 1)
|
| 244 |
+
return 'cat' if predicted.item() == 0 else 'dog'
|
| 245 |
+
|
| 246 |
+
def visualize_predictions(model, test_loader, num_images=8):
|
| 247 |
+
"""
|
| 248 |
+
Visualizes sample predictions from the test set.
|
| 249 |
+
Args:
|
| 250 |
+
model: The trained neural network model.
|
| 251 |
+
test_loader: DataLoader for the test data.
|
| 252 |
+
num_images (int): Number of images to display.
|
| 253 |
+
"""
|
| 254 |
+
model.eval()
|
| 255 |
+
dataiter = iter(test_loader)
|
| 256 |
+
images, labels = next(dataiter) # Use the built-in next() function
|
| 257 |
+
|
| 258 |
+
images = images.to(device)
|
| 259 |
+
labels = labels.to(device)
|
| 260 |
+
|
| 261 |
+
# Get predictions
|
| 262 |
+
outputs = model(images)
|
| 263 |
+
_, predicted = torch.max(outputs, 1)
|
| 264 |
+
|
| 265 |
+
# Move images to CPU for plotting
|
| 266 |
+
images = images.cpu().numpy()
|
| 267 |
+
predicted = predicted.cpu().numpy()
|
| 268 |
+
labels = labels.cpu().numpy()
|
| 269 |
+
|
| 270 |
+
# Plot the images with predicted and true labels
|
| 271 |
+
fig = plt.figure(figsize=(10, 4))
|
| 272 |
+
for idx in range(num_images):
|
| 273 |
+
ax = fig.add_subplot(2, num_images // 2, idx+1)
|
| 274 |
+
img = images[idx][0]
|
| 275 |
+
ax.imshow(img, cmap='gray')
|
| 276 |
+
pred_label = 'cat' if predicted[idx] == 0 else 'dog'
|
| 277 |
+
true_label = 'cat' if labels[idx] == 0 else 'dog'
|
| 278 |
+
ax.set_title(f'Pred: {pred_label}\nTrue: {true_label}')
|
| 279 |
+
ax.axis('off')
|
| 280 |
+
plt.tight_layout()
|
| 281 |
+
plt.savefig('sample_predictions.png')
|
| 282 |
+
print('Sample predictions saved to sample_predictions.png')
|
| 283 |
+
|
| 284 |
+
def main():
|
| 285 |
+
# Load configuration
|
| 286 |
+
config = load_config()
|
| 287 |
+
|
| 288 |
+
# Step 1: Download the data
|
| 289 |
+
download_quickdraw_data()
|
| 290 |
+
|
| 291 |
+
# Step 2: Load and preprocess the data
|
| 292 |
+
train_loader, test_loader = load_and_preprocess_data(num_samples=config['num_samples'])
|
| 293 |
+
|
| 294 |
+
# Step 3: Initialize the model
|
| 295 |
+
model = SimpleCNN().to(device)
|
| 296 |
+
|
| 297 |
+
# Step 4: Train the model
|
| 298 |
+
train_model(model, train_loader, num_epochs=config['num_epochs'], learning_rate=config['learning_rate'])
|
| 299 |
+
|
| 300 |
+
# Step 5: Evaluate the model
|
| 301 |
+
evaluate_model(model, test_loader)
|
| 302 |
+
|
| 303 |
+
# Step 6: Visualize sample predictions
|
| 304 |
+
visualize_predictions(model, test_loader, num_images=8)
|
| 305 |
+
|
| 306 |
+
# Step 7: Save the model
|
| 307 |
+
save_model(model, config['model_save_path'])
|
| 308 |
+
|
| 309 |
+
if __name__ == '__main__':
|
| 310 |
+
main()
|