Added model without flair embeddings
Browse files- loss.tsv +2 -2
- pytorch_model.bin +2 -2
- training.log +313 -331
loss.tsv
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
| 2 |
-
1
|
| 3 |
-
2
|
|
|
|
| 1 |
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
| 2 |
+
1 14:24:53 0 0.0100 0.291245240352544 0.06397613137960434 0.9724 0.9736 0.973 0.9477
|
| 3 |
+
2 14:42:51 0 0.0100 0.13731835639464673 0.05747831612825394 0.9826 0.9863 0.9844 0.9696
|
pytorch_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1c623f10dba949ae162389713d32ce968220b060cfad3fdb180300495a7f35cc
|
| 3 |
+
size 714487533
|
training.log
CHANGED
|
@@ -1,408 +1,390 @@
|
|
| 1 |
-
2022-10-
|
| 2 |
-
2022-10-
|
| 3 |
-
(embeddings):
|
| 4 |
-
(
|
| 5 |
-
(
|
| 6 |
-
(
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
(
|
| 14 |
-
(
|
| 15 |
-
(
|
| 16 |
-
(
|
| 17 |
-
(
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
| 22 |
-
)
|
| 23 |
-
(output): BertSelfOutput(
|
| 24 |
-
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 25 |
-
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 26 |
-
(dropout): Dropout(p=0.1, inplace=False)
|
| 27 |
-
)
|
| 28 |
-
)
|
| 29 |
-
(intermediate): BertIntermediate(
|
| 30 |
-
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 31 |
-
(intermediate_act_fn): GELUActivation()
|
| 32 |
)
|
| 33 |
-
(output):
|
| 34 |
-
(dense): Linear(in_features=
|
| 35 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 36 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 37 |
)
|
| 38 |
)
|
| 39 |
-
(
|
| 40 |
-
(
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
(
|
| 55 |
-
(
|
| 56 |
)
|
| 57 |
-
(output):
|
| 58 |
-
(dense): Linear(in_features=
|
| 59 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 60 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 61 |
)
|
| 62 |
)
|
| 63 |
-
(
|
| 64 |
-
(
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
(
|
| 79 |
-
(
|
| 80 |
)
|
| 81 |
-
(output):
|
| 82 |
-
(dense): Linear(in_features=
|
| 83 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 84 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 85 |
)
|
| 86 |
)
|
| 87 |
-
(
|
| 88 |
-
(
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
(
|
| 103 |
-
(
|
| 104 |
)
|
| 105 |
-
(output):
|
| 106 |
-
(dense): Linear(in_features=
|
| 107 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 108 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 109 |
)
|
| 110 |
)
|
| 111 |
-
(
|
| 112 |
-
(
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
(
|
| 127 |
-
(
|
| 128 |
)
|
| 129 |
-
(output):
|
| 130 |
-
(dense): Linear(in_features=
|
| 131 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 132 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 133 |
)
|
| 134 |
)
|
| 135 |
-
(
|
| 136 |
-
(
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
(
|
| 151 |
-
(
|
| 152 |
)
|
| 153 |
-
(output):
|
| 154 |
-
(dense): Linear(in_features=
|
| 155 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 156 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 157 |
)
|
| 158 |
)
|
| 159 |
-
(
|
| 160 |
-
(
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
(
|
| 175 |
-
(
|
| 176 |
)
|
| 177 |
-
(output):
|
| 178 |
-
(dense): Linear(in_features=
|
| 179 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 180 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 181 |
)
|
| 182 |
)
|
| 183 |
-
(
|
| 184 |
-
(
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
(
|
| 199 |
-
(
|
| 200 |
)
|
| 201 |
-
(output):
|
| 202 |
-
(dense): Linear(in_features=
|
| 203 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 204 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 205 |
)
|
| 206 |
)
|
| 207 |
-
(
|
| 208 |
-
(
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
(
|
| 223 |
-
(
|
| 224 |
)
|
| 225 |
-
(output):
|
| 226 |
-
(dense): Linear(in_features=
|
| 227 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 228 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 229 |
)
|
| 230 |
)
|
| 231 |
-
(
|
| 232 |
-
(
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
(
|
| 247 |
-
(
|
| 248 |
)
|
| 249 |
-
(output):
|
| 250 |
-
(dense): Linear(in_features=
|
| 251 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 252 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 253 |
)
|
| 254 |
)
|
| 255 |
-
(
|
| 256 |
-
(
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
(
|
| 271 |
-
(
|
| 272 |
)
|
| 273 |
-
(output):
|
| 274 |
-
(dense): Linear(in_features=
|
| 275 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 276 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 277 |
)
|
| 278 |
)
|
| 279 |
-
(
|
| 280 |
-
(
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
(
|
| 295 |
-
(
|
| 296 |
)
|
| 297 |
-
(output):
|
| 298 |
-
(dense): Linear(in_features=
|
| 299 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 300 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 301 |
)
|
| 302 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
)
|
| 304 |
)
|
| 305 |
-
(pooler): BertPooler(
|
| 306 |
-
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 307 |
-
(activation): Tanh()
|
| 308 |
-
)
|
| 309 |
-
)
|
| 310 |
-
)
|
| 311 |
-
(list_embedding_1): FlairEmbeddings(
|
| 312 |
-
(lm): LanguageModel(
|
| 313 |
-
(drop): Dropout(p=0.5, inplace=False)
|
| 314 |
-
(encoder): Embedding(275, 100)
|
| 315 |
-
(rnn): LSTM(100, 1024)
|
| 316 |
-
(decoder): Linear(in_features=1024, out_features=275, bias=True)
|
| 317 |
)
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
(drop): Dropout(p=0.5, inplace=False)
|
| 322 |
-
(encoder): Embedding(275, 100)
|
| 323 |
-
(rnn): LSTM(100, 1024)
|
| 324 |
-
(decoder): Linear(in_features=1024, out_features=275, bias=True)
|
| 325 |
)
|
| 326 |
)
|
| 327 |
)
|
|
|
|
| 328 |
(word_dropout): WordDropout(p=0.05)
|
| 329 |
(locked_dropout): LockedDropout(p=0.5)
|
| 330 |
-
(
|
| 331 |
-
(linear): Linear(in_features=2816, out_features=13, bias=True)
|
| 332 |
(loss_function): CrossEntropyLoss()
|
| 333 |
)"
|
| 334 |
-
2022-10-
|
| 335 |
-
2022-10-
|
| 336 |
-
2022-10-
|
| 337 |
-
2022-10-
|
| 338 |
-
2022-10-
|
| 339 |
-
2022-10-
|
| 340 |
-
2022-10-
|
| 341 |
-
2022-10-
|
| 342 |
-
2022-10-
|
| 343 |
-
2022-10-
|
| 344 |
-
2022-10-
|
| 345 |
-
2022-10-
|
| 346 |
-
2022-10-
|
| 347 |
-
2022-10-
|
| 348 |
-
2022-10-
|
| 349 |
-
2022-10-
|
| 350 |
-
2022-10-
|
| 351 |
-
2022-10-
|
| 352 |
-
2022-10-
|
| 353 |
-
2022-10-
|
| 354 |
-
2022-10-
|
| 355 |
-
2022-10-
|
| 356 |
-
2022-10-
|
| 357 |
-
2022-10-
|
| 358 |
-
2022-10-
|
| 359 |
-
2022-10-
|
| 360 |
-
2022-10-
|
| 361 |
-
2022-10-
|
| 362 |
-
2022-10-
|
| 363 |
-
2022-10-
|
| 364 |
-
2022-10-
|
| 365 |
-
2022-10-
|
| 366 |
-
2022-10-
|
| 367 |
-
2022-10-
|
| 368 |
-
2022-10-
|
| 369 |
-
2022-10-
|
| 370 |
-
2022-10-
|
| 371 |
-
2022-10-
|
| 372 |
-
2022-10-
|
| 373 |
-
2022-10-
|
| 374 |
-
2022-10-
|
| 375 |
-
2022-10-
|
| 376 |
-
2022-10-
|
| 377 |
-
2022-10-
|
| 378 |
-
2022-10-
|
| 379 |
-
2022-10-
|
| 380 |
-
2022-10-
|
| 381 |
-
2022-10-
|
| 382 |
-
2022-10-
|
| 383 |
-
2022-10-
|
| 384 |
-
2022-10-
|
| 385 |
-
2022-10-
|
| 386 |
-
2022-10-
|
| 387 |
-
2022-10-
|
| 388 |
-
2022-10-
|
| 389 |
-
2022-10-
|
| 390 |
-
2022-10-
|
| 391 |
-
2022-10-
|
| 392 |
Results:
|
| 393 |
-
- F-score (micro) 0.
|
| 394 |
-
- F-score (macro) 0.
|
| 395 |
-
- Accuracy 0.
|
| 396 |
|
| 397 |
By class:
|
| 398 |
precision recall f1-score support
|
| 399 |
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
color 0.
|
| 403 |
|
| 404 |
-
micro avg 0.
|
| 405 |
-
macro avg 0.
|
| 406 |
-
weighted avg 0.
|
| 407 |
|
| 408 |
-
2022-10-
|
|
|
|
| 1 |
+
2022-10-04 14:07:15,489 ----------------------------------------------------------------------------------------------------
|
| 2 |
+
2022-10-04 14:07:15,492 Model: "SequenceTagger(
|
| 3 |
+
(embeddings): TransformerWordEmbeddings(
|
| 4 |
+
(model): BertModel(
|
| 5 |
+
(embeddings): BertEmbeddings(
|
| 6 |
+
(word_embeddings): Embedding(119547, 768, padding_idx=0)
|
| 7 |
+
(position_embeddings): Embedding(512, 768)
|
| 8 |
+
(token_type_embeddings): Embedding(2, 768)
|
| 9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 11 |
+
)
|
| 12 |
+
(encoder): BertEncoder(
|
| 13 |
+
(layer): ModuleList(
|
| 14 |
+
(0): BertLayer(
|
| 15 |
+
(attention): BertAttention(
|
| 16 |
+
(self): BertSelfAttention(
|
| 17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
)
|
| 22 |
+
(output): BertSelfOutput(
|
| 23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 24 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 25 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 26 |
)
|
| 27 |
)
|
| 28 |
+
(intermediate): BertIntermediate(
|
| 29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 30 |
+
(intermediate_act_fn): GELUActivation()
|
| 31 |
+
)
|
| 32 |
+
(output): BertOutput(
|
| 33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 36 |
+
)
|
| 37 |
+
)
|
| 38 |
+
(1): BertLayer(
|
| 39 |
+
(attention): BertAttention(
|
| 40 |
+
(self): BertSelfAttention(
|
| 41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 45 |
)
|
| 46 |
+
(output): BertSelfOutput(
|
| 47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 48 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 49 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 50 |
)
|
| 51 |
)
|
| 52 |
+
(intermediate): BertIntermediate(
|
| 53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 54 |
+
(intermediate_act_fn): GELUActivation()
|
| 55 |
+
)
|
| 56 |
+
(output): BertOutput(
|
| 57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 60 |
+
)
|
| 61 |
+
)
|
| 62 |
+
(2): BertLayer(
|
| 63 |
+
(attention): BertAttention(
|
| 64 |
+
(self): BertSelfAttention(
|
| 65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 69 |
)
|
| 70 |
+
(output): BertSelfOutput(
|
| 71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 72 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 73 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 74 |
)
|
| 75 |
)
|
| 76 |
+
(intermediate): BertIntermediate(
|
| 77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 78 |
+
(intermediate_act_fn): GELUActivation()
|
| 79 |
+
)
|
| 80 |
+
(output): BertOutput(
|
| 81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 84 |
+
)
|
| 85 |
+
)
|
| 86 |
+
(3): BertLayer(
|
| 87 |
+
(attention): BertAttention(
|
| 88 |
+
(self): BertSelfAttention(
|
| 89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 93 |
)
|
| 94 |
+
(output): BertSelfOutput(
|
| 95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 96 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 97 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 98 |
)
|
| 99 |
)
|
| 100 |
+
(intermediate): BertIntermediate(
|
| 101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 102 |
+
(intermediate_act_fn): GELUActivation()
|
| 103 |
+
)
|
| 104 |
+
(output): BertOutput(
|
| 105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 108 |
+
)
|
| 109 |
+
)
|
| 110 |
+
(4): BertLayer(
|
| 111 |
+
(attention): BertAttention(
|
| 112 |
+
(self): BertSelfAttention(
|
| 113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 117 |
)
|
| 118 |
+
(output): BertSelfOutput(
|
| 119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 120 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 121 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 122 |
)
|
| 123 |
)
|
| 124 |
+
(intermediate): BertIntermediate(
|
| 125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 126 |
+
(intermediate_act_fn): GELUActivation()
|
| 127 |
+
)
|
| 128 |
+
(output): BertOutput(
|
| 129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 132 |
+
)
|
| 133 |
+
)
|
| 134 |
+
(5): BertLayer(
|
| 135 |
+
(attention): BertAttention(
|
| 136 |
+
(self): BertSelfAttention(
|
| 137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 141 |
)
|
| 142 |
+
(output): BertSelfOutput(
|
| 143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 144 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 145 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 146 |
)
|
| 147 |
)
|
| 148 |
+
(intermediate): BertIntermediate(
|
| 149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 150 |
+
(intermediate_act_fn): GELUActivation()
|
| 151 |
+
)
|
| 152 |
+
(output): BertOutput(
|
| 153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 156 |
+
)
|
| 157 |
+
)
|
| 158 |
+
(6): BertLayer(
|
| 159 |
+
(attention): BertAttention(
|
| 160 |
+
(self): BertSelfAttention(
|
| 161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 165 |
)
|
| 166 |
+
(output): BertSelfOutput(
|
| 167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 168 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 169 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 170 |
)
|
| 171 |
)
|
| 172 |
+
(intermediate): BertIntermediate(
|
| 173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 174 |
+
(intermediate_act_fn): GELUActivation()
|
| 175 |
+
)
|
| 176 |
+
(output): BertOutput(
|
| 177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 180 |
+
)
|
| 181 |
+
)
|
| 182 |
+
(7): BertLayer(
|
| 183 |
+
(attention): BertAttention(
|
| 184 |
+
(self): BertSelfAttention(
|
| 185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 189 |
)
|
| 190 |
+
(output): BertSelfOutput(
|
| 191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 192 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 193 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 194 |
)
|
| 195 |
)
|
| 196 |
+
(intermediate): BertIntermediate(
|
| 197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 198 |
+
(intermediate_act_fn): GELUActivation()
|
| 199 |
+
)
|
| 200 |
+
(output): BertOutput(
|
| 201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 204 |
+
)
|
| 205 |
+
)
|
| 206 |
+
(8): BertLayer(
|
| 207 |
+
(attention): BertAttention(
|
| 208 |
+
(self): BertSelfAttention(
|
| 209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 213 |
)
|
| 214 |
+
(output): BertSelfOutput(
|
| 215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 216 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 217 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 218 |
)
|
| 219 |
)
|
| 220 |
+
(intermediate): BertIntermediate(
|
| 221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 222 |
+
(intermediate_act_fn): GELUActivation()
|
| 223 |
+
)
|
| 224 |
+
(output): BertOutput(
|
| 225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 228 |
+
)
|
| 229 |
+
)
|
| 230 |
+
(9): BertLayer(
|
| 231 |
+
(attention): BertAttention(
|
| 232 |
+
(self): BertSelfAttention(
|
| 233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 237 |
)
|
| 238 |
+
(output): BertSelfOutput(
|
| 239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 240 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 241 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 242 |
)
|
| 243 |
)
|
| 244 |
+
(intermediate): BertIntermediate(
|
| 245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 246 |
+
(intermediate_act_fn): GELUActivation()
|
| 247 |
+
)
|
| 248 |
+
(output): BertOutput(
|
| 249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 252 |
+
)
|
| 253 |
+
)
|
| 254 |
+
(10): BertLayer(
|
| 255 |
+
(attention): BertAttention(
|
| 256 |
+
(self): BertSelfAttention(
|
| 257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 261 |
)
|
| 262 |
+
(output): BertSelfOutput(
|
| 263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 264 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 265 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 266 |
)
|
| 267 |
)
|
| 268 |
+
(intermediate): BertIntermediate(
|
| 269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 270 |
+
(intermediate_act_fn): GELUActivation()
|
| 271 |
+
)
|
| 272 |
+
(output): BertOutput(
|
| 273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 276 |
+
)
|
| 277 |
+
)
|
| 278 |
+
(11): BertLayer(
|
| 279 |
+
(attention): BertAttention(
|
| 280 |
+
(self): BertSelfAttention(
|
| 281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
| 282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
| 283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
| 284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 285 |
)
|
| 286 |
+
(output): BertSelfOutput(
|
| 287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 288 |
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 289 |
(dropout): Dropout(p=0.1, inplace=False)
|
| 290 |
)
|
| 291 |
)
|
| 292 |
+
(intermediate): BertIntermediate(
|
| 293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
| 294 |
+
(intermediate_act_fn): GELUActivation()
|
| 295 |
+
)
|
| 296 |
+
(output): BertOutput(
|
| 297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
| 298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
| 299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 300 |
+
)
|
| 301 |
)
|
| 302 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
)
|
| 304 |
+
(pooler): BertPooler(
|
| 305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
| 306 |
+
(activation): Tanh()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
)
|
| 308 |
)
|
| 309 |
)
|
| 310 |
+
(dropout): Dropout(p=0.3, inplace=False)
|
| 311 |
(word_dropout): WordDropout(p=0.05)
|
| 312 |
(locked_dropout): LockedDropout(p=0.5)
|
| 313 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
|
|
|
| 314 |
(loss_function): CrossEntropyLoss()
|
| 315 |
)"
|
| 316 |
+
2022-10-04 14:07:15,510 ----------------------------------------------------------------------------------------------------
|
| 317 |
+
2022-10-04 14:07:15,510 Corpus: "Corpus: 70000 train + 15000 dev + 15000 test sentences"
|
| 318 |
+
2022-10-04 14:07:15,510 ----------------------------------------------------------------------------------------------------
|
| 319 |
+
2022-10-04 14:07:15,511 Parameters:
|
| 320 |
+
2022-10-04 14:07:15,511 - learning_rate: "0.010000"
|
| 321 |
+
2022-10-04 14:07:15,511 - mini_batch_size: "8"
|
| 322 |
+
2022-10-04 14:07:15,511 - patience: "3"
|
| 323 |
+
2022-10-04 14:07:15,512 - anneal_factor: "0.5"
|
| 324 |
+
2022-10-04 14:07:15,512 - max_epochs: "2"
|
| 325 |
+
2022-10-04 14:07:15,512 - shuffle: "True"
|
| 326 |
+
2022-10-04 14:07:15,512 - train_with_dev: "False"
|
| 327 |
+
2022-10-04 14:07:15,513 - batch_growth_annealing: "False"
|
| 328 |
+
2022-10-04 14:07:15,513 ----------------------------------------------------------------------------------------------------
|
| 329 |
+
2022-10-04 14:07:15,513 Model training base path: "c:\Users\Ivan\Documents\Projects\Yoda\NER\model\flair\src\..\models\trans_sm_flair"
|
| 330 |
+
2022-10-04 14:07:15,513 ----------------------------------------------------------------------------------------------------
|
| 331 |
+
2022-10-04 14:07:15,513 Device: cuda:0
|
| 332 |
+
2022-10-04 14:07:15,514 ----------------------------------------------------------------------------------------------------
|
| 333 |
+
2022-10-04 14:07:15,514 Embeddings storage mode: cpu
|
| 334 |
+
2022-10-04 14:07:15,514 ----------------------------------------------------------------------------------------------------
|
| 335 |
+
2022-10-04 14:08:50,056 epoch 1 - iter 875/8750 - loss 0.77736243 - samples/sec: 74.10 - lr: 0.010000
|
| 336 |
+
2022-10-04 14:10:25,613 epoch 1 - iter 1750/8750 - loss 0.58654474 - samples/sec: 73.31 - lr: 0.010000
|
| 337 |
+
2022-10-04 14:12:00,221 epoch 1 - iter 2625/8750 - loss 0.49473747 - samples/sec: 74.05 - lr: 0.010000
|
| 338 |
+
2022-10-04 14:13:35,035 epoch 1 - iter 3500/8750 - loss 0.43711232 - samples/sec: 73.87 - lr: 0.010000
|
| 339 |
+
2022-10-04 14:15:08,344 epoch 1 - iter 4375/8750 - loss 0.39713865 - samples/sec: 75.06 - lr: 0.010000
|
| 340 |
+
2022-10-04 14:16:41,989 epoch 1 - iter 5250/8750 - loss 0.36731971 - samples/sec: 74.80 - lr: 0.010000
|
| 341 |
+
2022-10-04 14:18:17,847 epoch 1 - iter 6125/8750 - loss 0.34209381 - samples/sec: 73.07 - lr: 0.010000
|
| 342 |
+
2022-10-04 14:19:52,115 epoch 1 - iter 7000/8750 - loss 0.32256861 - samples/sec: 74.30 - lr: 0.010000
|
| 343 |
+
2022-10-04 14:21:26,066 epoch 1 - iter 7875/8750 - loss 0.30596431 - samples/sec: 74.55 - lr: 0.010000
|
| 344 |
+
2022-10-04 14:23:00,059 epoch 1 - iter 8750/8750 - loss 0.29124524 - samples/sec: 74.51 - lr: 0.010000
|
| 345 |
+
2022-10-04 14:23:00,061 ----------------------------------------------------------------------------------------------------
|
| 346 |
+
2022-10-04 14:23:00,062 EPOCH 1 done: loss 0.2912 - lr 0.010000
|
| 347 |
+
2022-10-04 14:24:52,210 Evaluating as a multi-label problem: False
|
| 348 |
+
2022-10-04 14:24:52,424 DEV : loss 0.06397613137960434 - f1-score (micro avg) 0.973
|
| 349 |
+
2022-10-04 14:24:53,223 BAD EPOCHS (no improvement): 0
|
| 350 |
+
2022-10-04 14:24:54,431 saving best model
|
| 351 |
+
2022-10-04 14:24:55,749 ----------------------------------------------------------------------------------------------------
|
| 352 |
+
2022-10-04 14:26:31,875 epoch 2 - iter 875/8750 - loss 0.15239591 - samples/sec: 72.88 - lr: 0.010000
|
| 353 |
+
2022-10-04 14:28:12,311 epoch 2 - iter 1750/8750 - loss 0.15109719 - samples/sec: 69.74 - lr: 0.010000
|
| 354 |
+
2022-10-04 14:29:49,414 epoch 2 - iter 2625/8750 - loss 0.15017726 - samples/sec: 72.14 - lr: 0.010000
|
| 355 |
+
2022-10-04 14:31:22,789 epoch 2 - iter 3500/8750 - loss 0.14709937 - samples/sec: 75.01 - lr: 0.010000
|
| 356 |
+
2022-10-04 14:32:56,365 epoch 2 - iter 4375/8750 - loss 0.14490590 - samples/sec: 74.87 - lr: 0.010000
|
| 357 |
+
2022-10-04 14:34:29,769 epoch 2 - iter 5250/8750 - loss 0.14379219 - samples/sec: 75.00 - lr: 0.010000
|
| 358 |
+
2022-10-04 14:36:04,122 epoch 2 - iter 6125/8750 - loss 0.14272196 - samples/sec: 74.24 - lr: 0.010000
|
| 359 |
+
2022-10-04 14:37:40,084 epoch 2 - iter 7000/8750 - loss 0.14024151 - samples/sec: 73.00 - lr: 0.010000
|
| 360 |
+
2022-10-04 14:39:15,077 epoch 2 - iter 7875/8750 - loss 0.13892120 - samples/sec: 73.73 - lr: 0.010000
|
| 361 |
+
2022-10-04 14:40:48,611 epoch 2 - iter 8750/8750 - loss 0.13731836 - samples/sec: 74.89 - lr: 0.010000
|
| 362 |
+
2022-10-04 14:40:48,617 ----------------------------------------------------------------------------------------------------
|
| 363 |
+
2022-10-04 14:40:48,617 EPOCH 2 done: loss 0.1373 - lr 0.010000
|
| 364 |
+
2022-10-04 14:42:50,048 Evaluating as a multi-label problem: False
|
| 365 |
+
2022-10-04 14:42:50,277 DEV : loss 0.05747831612825394 - f1-score (micro avg) 0.9844
|
| 366 |
+
2022-10-04 14:42:51,053 BAD EPOCHS (no improvement): 0
|
| 367 |
+
2022-10-04 14:42:52,333 saving best model
|
| 368 |
+
2022-10-04 14:42:54,576 ----------------------------------------------------------------------------------------------------
|
| 369 |
+
2022-10-04 14:42:54,600 loading file c:\Users\Ivan\Documents\Projects\Yoda\NER\model\flair\src\..\models\trans_sm_flair\best-model.pt
|
| 370 |
+
2022-10-04 14:42:57,086 SequenceTagger predicts: Dictionary with 13 tags: O, S-size, B-size, E-size, I-size, S-brand, B-brand, E-brand, I-brand, S-color, B-color, E-color, I-color
|
| 371 |
+
2022-10-04 14:44:29,459 Evaluating as a multi-label problem: False
|
| 372 |
+
2022-10-04 14:44:29,668 0.9816 0.9857 0.9837 0.9679
|
| 373 |
+
2022-10-04 14:44:29,669
|
| 374 |
Results:
|
| 375 |
+
- F-score (micro) 0.9837
|
| 376 |
+
- F-score (macro) 0.9843
|
| 377 |
+
- Accuracy 0.9679
|
| 378 |
|
| 379 |
By class:
|
| 380 |
precision recall f1-score support
|
| 381 |
|
| 382 |
+
size 0.9820 0.9859 0.9839 17988
|
| 383 |
+
brand 0.9773 0.9860 0.9817 11674
|
| 384 |
+
color 0.9905 0.9840 0.9872 5070
|
| 385 |
|
| 386 |
+
micro avg 0.9816 0.9857 0.9837 34732
|
| 387 |
+
macro avg 0.9833 0.9853 0.9843 34732
|
| 388 |
+
weighted avg 0.9816 0.9857 0.9837 34732
|
| 389 |
|
| 390 |
+
2022-10-04 14:44:29,670 ----------------------------------------------------------------------------------------------------
|