--- license: apache-2.0 datasets: - japhba/pubmed_simple language: - en tags: - v2_pretrain_medassist - gqa - rope - swiglu - rmsnorm - medical --- # ๐Ÿง  MedAssist-GPT-401M **Mid-sized medical-domain LLM pretraining project.** โš ๏ธ *Strictly for research. Not for clinical or diagnostic use.* --- ## ๐Ÿงฉ TL;DR * **Architecture:** Transformer with **RoPE**, **GQA**, **SwiGLU** MLP, and **RMSNorm** * **Tokenizer:** `tiktoken` `p50k_base` (vocab โ‰ˆ **50,281**) * **Context length:** 1,024 tokens * **Parameters:** โ‰ˆ **401 M** (`d_model=1024`, `n_heads=32`, `blocks=24`, `d_ff=2048`) * **GQA groups:** 8 โ†’ 4 KV heads per 32 query heads * **Dropout:** 0.0 (pretraining) * **Precision:** **bf16** mixed precision * **Training objective:** Next-token prediction * **Effective batch:** 32 ร— 4 = 128 --- ## ๐Ÿ“š Data | Field | Value | | ----------------------- | --------------------------------- | | **Dataset** | `japhba/pubmed_simple` | | **Text column** | `abstract` | | **Train/Val split** | 95 / 5 | | **Samples used** | 100 k abstracts | | **Seq length / stride** | 1,024 / 1,024 | | **Cleaning** | `use_clean=False` (raw abstracts) | --- ## โš™๏ธ Training | Item | Value | | -------------------------- | --------------------------------------------------------------------- | | **Framework** | PyTorch | | **Precision** | bf16 | | **Objective** | Causal LM (next-token prediction) | | **Optimizer** | AdamW (`ฮฒโ‚ = 0.9`, `ฮฒโ‚‚ = 0.95`, `eps = 1e-8`) | | **Learning rate** | 3 ร— 10โปโด (linear + 100-step warmup) | | **Weight decay** | 0.1 | | **Batch size** | 32 (ร— 4 grad acc โ†’ 128 effective) | | **Grad clip** | 1.0 | | **Total steps** | 100 k | | **Eval** | every 500 steps ร— 100 iters | | **Checkpoint save** | every 1 k steps | | **Seed** | 7 979 797 | | **Gradient checkpointing** | โœ… Enabled | | **WandB** | `kunjcr2-dreamable/MedAssist-GPT-Pretraining` (`medassist-401M-test`) | | **HF repo** | `kunjcr2/MedAssist-GPT-401M` | --- ## ๐Ÿงฎ Training Environment | Item | Value | | ------------------- | ---------------------- | | **Hardware** | 1ร— NVIDIA A100 (80 GB) | | **Precision dtype** | bf16 | | **Runtime** | ~15 hours | | **Scheduler** | Linear LR decay | | **Mixed precision** | Native AMP (bf16) | --- ## ๐Ÿ“ˆ Loss Curves *(Placeholder โ€” will update post-training)* ![train\_loss](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F67c358189919777813863c48%2FbQGVqgx4GoqXZTcMh8KhM.png) ![val\_loss](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F67c358189919777813863c48%2FjhNnS_Wvhj4-fzNoO2dRN.png) --- ## ๐Ÿš€ Minimal Inference ```python # pip install torch tiktoken huggingface_hub safetensors import torch, tiktoken from safetensors.torch import load_file from huggingface_hub import hf_hub_download from MedAssistGPT import MedAssistGPT, MODEL_CONFIG REPO_ID = "kunjcr2/MedAssist-GPT-401M" weights = hf_hub_download(REPO_ID, "model.safetensors") state = load_file(weights, device="cpu") model = MedAssistGPT(MODEL_CONFIG) model.load_state_dict(state, strict=True).eval() enc = tiktoken.get_encoding("p50k_base") ids = torch.tensor([enc.encode( "A patient was admitted with severe headache. Initial assessment revealed" )], dtype=torch.long) for _ in range(100): logits = model(ids)[:, -1, :] next_id = torch.multinomial(torch.softmax(logits / 0.6, dim=-1), 1) ids = torch.cat([ids, next_id], dim=1) print(enc.decode(ids[0].tolist())) ``` --- ## ๐Ÿ’พ Checkpoints * Main run: `medassist-401M-test` * Checkpoint: `/checkpoints/checkpoint_step_44500.pt` --- ## ๐Ÿงช Intended Use For research and experimentation only โ€” e.g., * domain-adapted pretraining, * architecture exploration, * fine-tuning for medical text understanding. ๐Ÿšซ **Not intended for clinical or production medical use.** --- ## ๐Ÿ”ฎ Future Work Next update includes: * **Supervised fine-tuning (SFT)** * **Reinforcement Learning (PPO) for alignment** --- ## ๐Ÿ“ Files * 'checkpoints/' * `config.json`, `tokenizer_config.json` * Training script / notebook defining `MedAssistGPT` --- ## ๐Ÿชช License Apache 2.0