BERT Fine-tuned on AG News for 4-Class Text Classification

Model Description

This model fine-tunes the bert-base-uncased model on the AG News dataset for text classification.
It classifies English news articles into one of four categories:

Label English Category Korean Label
0 World 세계뉴스
1 Sports 스포츠
2 Business 비즈니스
3 Science/Technology 과학/기술

Intended Uses & Limitations

Intended Uses

  • News article categorization
  • Content tagging for media organizations
  • NLP education and experimentation

Limitations

  • Trained only on English text → may not generalize to other languages
  • May contain biases from AG News dataset
  • Requires further evaluation for production or fairness tasks

Training Details

  • Base model: bert-base-uncased
  • Dataset: AG News
  • Task: Text classification (4 classes)
  • Tokenizer: BertTokenizer (uncased, max length 128)
  • Optimizer: AdamW
  • Loss function: CrossEntropyLoss
  • Batch size: 16
  • Epochs: 3
  • Learning rate: 2e-5

Evaluation

Metric Score
Accuracy 82.5%

Usage Example

from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch

model_name = "your-username/bert-agnews-korean-labels" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name)

text = "Apple announces the new iPhone at their annual event." inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) outputs = model(**inputs) predicted_class = torch.argmax(outputs.logits).item()

label_map = { 0: "세계뉴스", 1: "스포츠", 2: "비즈니스", 3: "과학/기술" }

print("Predicted label:", label_map[predicted_class])

Ethical Considerations

  • May reflect label bias inherent in AG News dataset.
  • Should not be used for misinformation or surveillance.
  • Verify performance before high-impact use cases.

Citation

If you use this model, please cite the base paper: @article{devlin2018bert, title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} }


Downloads last month
4
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for kmjun3203/bert-based-uncased-argnews4-v01

Finetuned
(6028)
this model

Dataset used to train kmjun3203/bert-based-uncased-argnews4-v01