Upload folder using huggingface_hub
Browse files- __init__.py +3 -0
- __pycache__/image_encoder.cpython-310.pyc +0 -0
- __pycache__/mci.cpython-310.pyc +0 -0
- config.json +16 -0
- image_encoder.py +90 -0
- mci.py +1478 -0
- model.safetensors +3 -0
- preprocessor_config.json +27 -0
__init__.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .image_encoder import FastViTImageEncoder, FastViTImageConfig
|
| 2 |
+
|
| 3 |
+
__all__ = ["FastViTImageEncoder", "FastViTImageConfig"]
|
__pycache__/image_encoder.cpython-310.pyc
ADDED
|
Binary file (2.08 kB). View file
|
|
|
__pycache__/mci.cpython-310.pyc
ADDED
|
Binary file (35.3 kB). View file
|
|
|
config.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"FastViTImageEncoder"
|
| 4 |
+
],
|
| 5 |
+
"embed_dim": 3072,
|
| 6 |
+
"image_size": 1024,
|
| 7 |
+
"model_type": "fastvit_image_encoder",
|
| 8 |
+
"torch_dtype": "float16",
|
| 9 |
+
"transformers_version": "4.48.3",
|
| 10 |
+
|
| 11 |
+
"auto_map": {
|
| 12 |
+
"AutoConfig": "image_encoder.FastViTImageConfig",
|
| 13 |
+
"AutoModel": "image_encoder.FastViTImageEncoder",
|
| 14 |
+
"AutoImageProcessor": "transformers.CLIPImageProcessor"
|
| 15 |
+
}
|
| 16 |
+
}
|
image_encoder.py
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
HF-compatible wrapper that turns the FastViT backbone into a pure *image encoder*.
|
| 3 |
+
Output: a single (B, embed_dim) vector obtained with the built-in GlobalPool2D head.
|
| 4 |
+
"""
|
| 5 |
+
import torch
|
| 6 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
| 7 |
+
from .mci import fastvithd, GlobalPool2D # imports your backbone factory
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# ----------------------- Config -----------------------
|
| 11 |
+
class FastViTImageConfig(PretrainedConfig):
|
| 12 |
+
"""Minimal config so HF knows the image size & embed dim."""
|
| 13 |
+
model_type = "fastvit_image_encoder"
|
| 14 |
+
|
| 15 |
+
def __init__(
|
| 16 |
+
self,
|
| 17 |
+
image_size: int = 1024,
|
| 18 |
+
embed_dim: int = 3072, # channels after conv_exp
|
| 19 |
+
**kwargs
|
| 20 |
+
):
|
| 21 |
+
self.image_size = image_size
|
| 22 |
+
self.embed_dim = embed_dim
|
| 23 |
+
super().__init__(**kwargs)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# ----------------------- Model ------------------------
|
| 27 |
+
class FastViTImageEncoder(PreTrainedModel):
|
| 28 |
+
"""
|
| 29 |
+
Wraps FastViT-HD and exposes an `.embeddings` output;
|
| 30 |
+
no text tower, no CLIP logits, only a pooled image embedding.
|
| 31 |
+
"""
|
| 32 |
+
config_class = FastViTImageConfig
|
| 33 |
+
main_input_name = "pixel_values"
|
| 34 |
+
|
| 35 |
+
def __init__(self, config: FastViTImageConfig):
|
| 36 |
+
super().__init__(config)
|
| 37 |
+
|
| 38 |
+
# We **keep** GlobalPool2D by asking for `num_classes = embed_dim`
|
| 39 |
+
# (FastViT replaces the classifier with GlobalPool2D in that case).
|
| 40 |
+
self.backbone = fastvithd(num_classes=0)
|
| 41 |
+
self.backbone.head = GlobalPool2D(
|
| 42 |
+
in_dim = 3072,
|
| 43 |
+
out_dim = 768
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# HF helper that registers weights for bf16/half-precision etc.
|
| 47 |
+
self.post_init()
|
| 48 |
+
|
| 49 |
+
# ------------------------------------------
|
| 50 |
+
def forward(self, pixel_values, return_dict=True, **unused):
|
| 51 |
+
"""
|
| 52 |
+
Args:
|
| 53 |
+
pixel_values: (B, 3, H, W) tensor (already resized/normalized).
|
| 54 |
+
Returns:
|
| 55 |
+
Dict with a single key `"embeddings"` of shape (B, embed_dim).
|
| 56 |
+
"""
|
| 57 |
+
# FastViT forward returns the pooled tensor directly because
|
| 58 |
+
# `num_classes == embed_dim` and head == GlobalPool2D.
|
| 59 |
+
embeddings = self.backbone(pixel_values) # (B, embed_dim)
|
| 60 |
+
|
| 61 |
+
if not return_dict:
|
| 62 |
+
return (embeddings,)
|
| 63 |
+
|
| 64 |
+
return {"embeddings": embeddings}
|
| 65 |
+
|
| 66 |
+
def forward(self, images):
|
| 67 |
+
return self.forward_images(images)
|
| 68 |
+
|
| 69 |
+
def feature_select(self, image_forward_outs):
|
| 70 |
+
# Features from penultimate layer
|
| 71 |
+
image_features = image_forward_outs["image_embeddings"]
|
| 72 |
+
|
| 73 |
+
# Reshape 4D tensor to 3D
|
| 74 |
+
B, C, H, W = image_features.shape
|
| 75 |
+
image_features = image_features.reshape(B, C, H*W)
|
| 76 |
+
image_features = image_features.transpose(1, 2)
|
| 77 |
+
return image_features
|
| 78 |
+
|
| 79 |
+
def forward_images(self, images):
|
| 80 |
+
if type(images) is list:
|
| 81 |
+
image_features = []
|
| 82 |
+
for image in images:
|
| 83 |
+
image_forward_out = self.backbone(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), return_image_embeddings=True)
|
| 84 |
+
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
| 85 |
+
image_features.append(image_feature)
|
| 86 |
+
else:
|
| 87 |
+
image_forward_outs = self.backbone(images.to(device=self.device, dtype=self.dtype), return_image_embeddings=True)
|
| 88 |
+
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
| 89 |
+
|
| 90 |
+
return image_features
|
mci.py
ADDED
|
@@ -0,0 +1,1478 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#
|
| 2 |
+
# For licensing see accompanying LICENSE file.
|
| 3 |
+
# Copyright (C) 2025 Apple Inc. All Rights Reserved.
|
| 4 |
+
#
|
| 5 |
+
import copy
|
| 6 |
+
from functools import partial
|
| 7 |
+
from typing import List, Tuple, Optional, Union, Dict
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
from torch import Tensor
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
from torch.nn.init import normal_
|
| 14 |
+
|
| 15 |
+
from timm.models import register_model
|
| 16 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
| 17 |
+
from timm.layers import DropPath, SqueezeExcite
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def _cfg(url="", **kwargs):
|
| 21 |
+
return {
|
| 22 |
+
"url": url,
|
| 23 |
+
"num_classes": 1000,
|
| 24 |
+
"input_size": (3, 256, 256),
|
| 25 |
+
"pool_size": None,
|
| 26 |
+
"crop_pct": 0.95,
|
| 27 |
+
"interpolation": "bicubic",
|
| 28 |
+
"mean": IMAGENET_DEFAULT_MEAN,
|
| 29 |
+
"std": IMAGENET_DEFAULT_STD,
|
| 30 |
+
"classifier": "head",
|
| 31 |
+
**kwargs,
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
default_cfgs = {
|
| 36 |
+
"fastvit_t": _cfg(crop_pct=0.9),
|
| 37 |
+
"fastvit_s": _cfg(crop_pct=0.9),
|
| 38 |
+
"fastvit_m": _cfg(crop_pct=0.95),
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class SEBlock(nn.Module):
|
| 43 |
+
"""Squeeze and Excite module.
|
| 44 |
+
|
| 45 |
+
Pytorch implementation of `Squeeze-and-Excitation Networks` -
|
| 46 |
+
https://arxiv.org/pdf/1709.01507.pdf
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
def __init__(self, in_channels: int, rd_ratio: float = 0.0625) -> None:
|
| 50 |
+
"""Construct a Squeeze and Excite Module.
|
| 51 |
+
|
| 52 |
+
Args:
|
| 53 |
+
in_channels: Number of input channels.
|
| 54 |
+
rd_ratio: Input channel reduction ratio.
|
| 55 |
+
"""
|
| 56 |
+
super(SEBlock, self).__init__()
|
| 57 |
+
self.reduce = nn.Conv2d(
|
| 58 |
+
in_channels=in_channels,
|
| 59 |
+
out_channels=int(in_channels * rd_ratio),
|
| 60 |
+
kernel_size=1,
|
| 61 |
+
stride=1,
|
| 62 |
+
bias=True,
|
| 63 |
+
)
|
| 64 |
+
self.expand = nn.Conv2d(
|
| 65 |
+
in_channels=int(in_channels * rd_ratio),
|
| 66 |
+
out_channels=in_channels,
|
| 67 |
+
kernel_size=1,
|
| 68 |
+
stride=1,
|
| 69 |
+
bias=True,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
| 73 |
+
"""Apply forward pass."""
|
| 74 |
+
b, c, h, w = inputs.size()
|
| 75 |
+
x = F.avg_pool2d(inputs, kernel_size=[h, w])
|
| 76 |
+
x = self.reduce(x)
|
| 77 |
+
x = F.relu(x)
|
| 78 |
+
x = self.expand(x)
|
| 79 |
+
x = torch.sigmoid(x)
|
| 80 |
+
x = x.view(-1, c, 1, 1)
|
| 81 |
+
return inputs * x
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class MobileOneBlock(nn.Module):
|
| 85 |
+
"""MobileOne building block.
|
| 86 |
+
|
| 87 |
+
This block has a multi-branched architecture at train-time
|
| 88 |
+
and plain-CNN style architecture at inference time
|
| 89 |
+
For more details, please refer to our paper:
|
| 90 |
+
`An Improved One millisecond Mobile Backbone` -
|
| 91 |
+
https://arxiv.org/pdf/2206.04040.pdf
|
| 92 |
+
"""
|
| 93 |
+
|
| 94 |
+
def __init__(
|
| 95 |
+
self,
|
| 96 |
+
in_channels: int,
|
| 97 |
+
out_channels: int,
|
| 98 |
+
kernel_size: int,
|
| 99 |
+
stride: int = 1,
|
| 100 |
+
padding: int = 0,
|
| 101 |
+
dilation: int = 1,
|
| 102 |
+
groups: int = 1,
|
| 103 |
+
inference_mode: bool = False,
|
| 104 |
+
use_se: bool = False,
|
| 105 |
+
use_act: bool = True,
|
| 106 |
+
use_scale_branch: bool = True,
|
| 107 |
+
num_conv_branches: int = 1,
|
| 108 |
+
activation: nn.Module = nn.GELU(),
|
| 109 |
+
) -> None:
|
| 110 |
+
"""Construct a MobileOneBlock module.
|
| 111 |
+
|
| 112 |
+
Args:
|
| 113 |
+
in_channels: Number of channels in the input.
|
| 114 |
+
out_channels: Number of channels produced by the block.
|
| 115 |
+
kernel_size: Size of the convolution kernel.
|
| 116 |
+
stride: Stride size.
|
| 117 |
+
padding: Zero-padding size.
|
| 118 |
+
dilation: Kernel dilation factor.
|
| 119 |
+
groups: Group number.
|
| 120 |
+
inference_mode: If True, instantiates model in inference mode.
|
| 121 |
+
use_se: Whether to use SE-ReLU activations.
|
| 122 |
+
use_act: Whether to use activation. Default: ``True``
|
| 123 |
+
use_scale_branch: Whether to use scale branch. Default: ``True``
|
| 124 |
+
num_conv_branches: Number of linear conv branches.
|
| 125 |
+
"""
|
| 126 |
+
super(MobileOneBlock, self).__init__()
|
| 127 |
+
self.inference_mode = inference_mode
|
| 128 |
+
self.groups = groups
|
| 129 |
+
self.stride = stride
|
| 130 |
+
self.padding = padding
|
| 131 |
+
self.dilation = dilation
|
| 132 |
+
self.kernel_size = kernel_size
|
| 133 |
+
self.in_channels = in_channels
|
| 134 |
+
self.out_channels = out_channels
|
| 135 |
+
self.num_conv_branches = num_conv_branches
|
| 136 |
+
|
| 137 |
+
# Check if SE-ReLU is requested
|
| 138 |
+
if use_se:
|
| 139 |
+
self.se = SEBlock(out_channels)
|
| 140 |
+
else:
|
| 141 |
+
self.se = nn.Identity()
|
| 142 |
+
|
| 143 |
+
if use_act:
|
| 144 |
+
self.activation = activation
|
| 145 |
+
else:
|
| 146 |
+
self.activation = nn.Identity()
|
| 147 |
+
|
| 148 |
+
if inference_mode:
|
| 149 |
+
self.reparam_conv = nn.Conv2d(
|
| 150 |
+
in_channels=in_channels,
|
| 151 |
+
out_channels=out_channels,
|
| 152 |
+
kernel_size=kernel_size,
|
| 153 |
+
stride=stride,
|
| 154 |
+
padding=padding,
|
| 155 |
+
dilation=dilation,
|
| 156 |
+
groups=groups,
|
| 157 |
+
bias=True,
|
| 158 |
+
)
|
| 159 |
+
else:
|
| 160 |
+
# Re-parameterizable skip connection
|
| 161 |
+
# Fallback, sometimes batchnorm tensors
|
| 162 |
+
# do not get instantiated correctly on some processes
|
| 163 |
+
# when using deepspeed + accelerate
|
| 164 |
+
norm_layer = nn.BatchNorm2d(num_features=in_channels)
|
| 165 |
+
if norm_layer.weight.shape[0] == 0:
|
| 166 |
+
norm_layer.weight = nn.Parameter(torch.zeros(in_channels))
|
| 167 |
+
if norm_layer.bias.shape[0] == 0:
|
| 168 |
+
norm_layer.bias = nn.Parameter(torch.zeros(in_channels))
|
| 169 |
+
|
| 170 |
+
self.rbr_skip = (
|
| 171 |
+
norm_layer
|
| 172 |
+
if out_channels == in_channels and stride == 1
|
| 173 |
+
else None
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# Re-parameterizable conv branches
|
| 177 |
+
if num_conv_branches > 0:
|
| 178 |
+
rbr_conv = list()
|
| 179 |
+
for _ in range(self.num_conv_branches):
|
| 180 |
+
rbr_conv.append(
|
| 181 |
+
self._conv_bn(kernel_size=kernel_size, padding=padding)
|
| 182 |
+
)
|
| 183 |
+
self.rbr_conv = nn.ModuleList(rbr_conv)
|
| 184 |
+
else:
|
| 185 |
+
self.rbr_conv = None
|
| 186 |
+
|
| 187 |
+
# Re-parameterizable scale branch
|
| 188 |
+
self.rbr_scale = None
|
| 189 |
+
if not isinstance(kernel_size, int):
|
| 190 |
+
kernel_size = kernel_size[0]
|
| 191 |
+
if (kernel_size > 1) and use_scale_branch:
|
| 192 |
+
self.rbr_scale = self._conv_bn(kernel_size=1, padding=0)
|
| 193 |
+
|
| 194 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 195 |
+
"""Apply forward pass."""
|
| 196 |
+
# Inference mode forward pass.
|
| 197 |
+
if self.inference_mode:
|
| 198 |
+
return self.activation(self.se(self.reparam_conv(x)))
|
| 199 |
+
|
| 200 |
+
# Multi-branched train-time forward pass.
|
| 201 |
+
# Skip branch output
|
| 202 |
+
identity_out = 0
|
| 203 |
+
if self.rbr_skip is not None:
|
| 204 |
+
identity_out = self.rbr_skip(x)
|
| 205 |
+
|
| 206 |
+
# Scale branch output
|
| 207 |
+
scale_out = 0
|
| 208 |
+
if self.rbr_scale is not None:
|
| 209 |
+
scale_out = self.rbr_scale(x)
|
| 210 |
+
|
| 211 |
+
# Other branches
|
| 212 |
+
out = scale_out + identity_out
|
| 213 |
+
if self.rbr_conv is not None:
|
| 214 |
+
for ix in range(self.num_conv_branches):
|
| 215 |
+
out += self.rbr_conv[ix](x)
|
| 216 |
+
|
| 217 |
+
return self.activation(self.se(out))
|
| 218 |
+
|
| 219 |
+
def reparameterize(self):
|
| 220 |
+
"""Following works like `RepVGG: Making VGG-style ConvNets Great Again` -
|
| 221 |
+
https://arxiv.org/pdf/2101.03697.pdf. We re-parameterize multi-branched
|
| 222 |
+
architecture used at training time to obtain a plain CNN-like structure
|
| 223 |
+
for inference.
|
| 224 |
+
"""
|
| 225 |
+
if self.inference_mode:
|
| 226 |
+
return
|
| 227 |
+
kernel, bias = self._get_kernel_bias()
|
| 228 |
+
self.reparam_conv = nn.Conv2d(
|
| 229 |
+
in_channels=self.in_channels,
|
| 230 |
+
out_channels=self.out_channels,
|
| 231 |
+
kernel_size=self.kernel_size,
|
| 232 |
+
stride=self.stride,
|
| 233 |
+
padding=self.padding,
|
| 234 |
+
dilation=self.dilation,
|
| 235 |
+
groups=self.groups,
|
| 236 |
+
bias=True,
|
| 237 |
+
)
|
| 238 |
+
self.reparam_conv.weight.data = kernel
|
| 239 |
+
self.reparam_conv.bias.data = bias
|
| 240 |
+
|
| 241 |
+
# Delete un-used branches
|
| 242 |
+
self.__delattr__("rbr_conv")
|
| 243 |
+
self.__delattr__("rbr_scale")
|
| 244 |
+
if hasattr(self, "rbr_skip"):
|
| 245 |
+
self.__delattr__("rbr_skip")
|
| 246 |
+
|
| 247 |
+
self.inference_mode = True
|
| 248 |
+
|
| 249 |
+
def _get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 250 |
+
"""Method to obtain re-parameterized kernel and bias.
|
| 251 |
+
Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L83
|
| 252 |
+
|
| 253 |
+
Returns:
|
| 254 |
+
Tuple of (kernel, bias) after fusing branches.
|
| 255 |
+
"""
|
| 256 |
+
# get weights and bias of scale branch
|
| 257 |
+
kernel_scale = 0
|
| 258 |
+
bias_scale = 0
|
| 259 |
+
if self.rbr_scale is not None:
|
| 260 |
+
kernel_scale, bias_scale = self._fuse_bn_tensor(self.rbr_scale)
|
| 261 |
+
# Pad scale branch kernel to match conv branch kernel size.
|
| 262 |
+
pad = self.kernel_size // 2
|
| 263 |
+
kernel_scale = torch.nn.functional.pad(kernel_scale, [pad, pad, pad, pad])
|
| 264 |
+
|
| 265 |
+
# get weights and bias of skip branch
|
| 266 |
+
kernel_identity = 0
|
| 267 |
+
bias_identity = 0
|
| 268 |
+
if self.rbr_skip is not None:
|
| 269 |
+
kernel_identity, bias_identity = self._fuse_bn_tensor(self.rbr_skip)
|
| 270 |
+
|
| 271 |
+
# get weights and bias of conv branches
|
| 272 |
+
kernel_conv = 0
|
| 273 |
+
bias_conv = 0
|
| 274 |
+
if self.rbr_conv is not None:
|
| 275 |
+
for ix in range(self.num_conv_branches):
|
| 276 |
+
_kernel, _bias = self._fuse_bn_tensor(self.rbr_conv[ix])
|
| 277 |
+
kernel_conv += _kernel
|
| 278 |
+
bias_conv += _bias
|
| 279 |
+
|
| 280 |
+
kernel_final = kernel_conv + kernel_scale + kernel_identity
|
| 281 |
+
bias_final = bias_conv + bias_scale + bias_identity
|
| 282 |
+
return kernel_final, bias_final
|
| 283 |
+
|
| 284 |
+
def _fuse_bn_tensor(
|
| 285 |
+
self, branch: Union[nn.Sequential, nn.BatchNorm2d]
|
| 286 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 287 |
+
"""Method to fuse batchnorm layer with preceeding conv layer.
|
| 288 |
+
Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L95
|
| 289 |
+
|
| 290 |
+
Args:
|
| 291 |
+
branch: Sequence of ops to be fused.
|
| 292 |
+
|
| 293 |
+
Returns:
|
| 294 |
+
Tuple of (kernel, bias) after fusing batchnorm.
|
| 295 |
+
"""
|
| 296 |
+
if isinstance(branch, nn.Sequential):
|
| 297 |
+
kernel = branch.conv.weight
|
| 298 |
+
running_mean = branch.bn.running_mean
|
| 299 |
+
running_var = branch.bn.running_var
|
| 300 |
+
gamma = branch.bn.weight
|
| 301 |
+
beta = branch.bn.bias
|
| 302 |
+
eps = branch.bn.eps
|
| 303 |
+
else:
|
| 304 |
+
assert isinstance(branch, nn.BatchNorm2d)
|
| 305 |
+
if not hasattr(self, "id_tensor"):
|
| 306 |
+
input_dim = self.in_channels // self.groups
|
| 307 |
+
|
| 308 |
+
kernel_size = self.kernel_size
|
| 309 |
+
if isinstance(self.kernel_size, int):
|
| 310 |
+
kernel_size = (self.kernel_size, self.kernel_size)
|
| 311 |
+
|
| 312 |
+
kernel_value = torch.zeros(
|
| 313 |
+
(self.in_channels, input_dim, kernel_size[0], kernel_size[1]),
|
| 314 |
+
dtype=branch.weight.dtype,
|
| 315 |
+
device=branch.weight.device,
|
| 316 |
+
)
|
| 317 |
+
for i in range(self.in_channels):
|
| 318 |
+
kernel_value[
|
| 319 |
+
i, i % input_dim, kernel_size[0] // 2, kernel_size[1] // 2
|
| 320 |
+
] = 1
|
| 321 |
+
self.id_tensor = kernel_value
|
| 322 |
+
kernel = self.id_tensor
|
| 323 |
+
running_mean = branch.running_mean
|
| 324 |
+
running_var = branch.running_var
|
| 325 |
+
gamma = branch.weight
|
| 326 |
+
beta = branch.bias
|
| 327 |
+
eps = branch.eps
|
| 328 |
+
std = (running_var + eps).sqrt()
|
| 329 |
+
t = (gamma / std).reshape(-1, 1, 1, 1)
|
| 330 |
+
return kernel * t, beta - running_mean * gamma / std
|
| 331 |
+
|
| 332 |
+
def _conv_bn(self, kernel_size: int, padding: int) -> nn.Sequential:
|
| 333 |
+
"""Helper method to construct conv-batchnorm layers.
|
| 334 |
+
|
| 335 |
+
Args:
|
| 336 |
+
kernel_size: Size of the convolution kernel.
|
| 337 |
+
padding: Zero-padding size.
|
| 338 |
+
|
| 339 |
+
Returns:
|
| 340 |
+
Conv-BN module.
|
| 341 |
+
"""
|
| 342 |
+
# Fallback, sometimes batchnorm tensors
|
| 343 |
+
# do not get instantiated correctly on some processes
|
| 344 |
+
# when using deepspeed + accelerate
|
| 345 |
+
norm_layer = nn.BatchNorm2d(num_features=self.out_channels)
|
| 346 |
+
if norm_layer.weight.shape[0] == 0:
|
| 347 |
+
norm_layer.weight = nn.Parameter(torch.zeros(self.out_channels))
|
| 348 |
+
if norm_layer.bias.shape[0] == 0:
|
| 349 |
+
norm_layer.bias = nn.Parameter(torch.zeros(self.out_channels))
|
| 350 |
+
|
| 351 |
+
mod_list = nn.Sequential()
|
| 352 |
+
mod_list.add_module(
|
| 353 |
+
"conv",
|
| 354 |
+
nn.Conv2d(
|
| 355 |
+
in_channels=self.in_channels,
|
| 356 |
+
out_channels=self.out_channels,
|
| 357 |
+
kernel_size=kernel_size,
|
| 358 |
+
stride=self.stride,
|
| 359 |
+
padding=padding,
|
| 360 |
+
groups=self.groups,
|
| 361 |
+
bias=False,
|
| 362 |
+
),
|
| 363 |
+
)
|
| 364 |
+
mod_list.add_module("bn", norm_layer)
|
| 365 |
+
return mod_list
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
class ReparamLargeKernelConv(nn.Module):
|
| 369 |
+
"""Building Block of RepLKNet
|
| 370 |
+
|
| 371 |
+
This class defines overparameterized large kernel conv block
|
| 372 |
+
introduced in `RepLKNet <https://arxiv.org/abs/2203.06717>`_
|
| 373 |
+
|
| 374 |
+
Reference: https://github.com/DingXiaoH/RepLKNet-pytorch
|
| 375 |
+
"""
|
| 376 |
+
|
| 377 |
+
def __init__(
|
| 378 |
+
self,
|
| 379 |
+
in_channels: int,
|
| 380 |
+
out_channels: int,
|
| 381 |
+
kernel_size: int,
|
| 382 |
+
stride: int,
|
| 383 |
+
groups: int,
|
| 384 |
+
small_kernel: int,
|
| 385 |
+
inference_mode: bool = False,
|
| 386 |
+
use_se: bool = False,
|
| 387 |
+
activation: nn.Module = nn.GELU(),
|
| 388 |
+
) -> None:
|
| 389 |
+
"""Construct a ReparamLargeKernelConv module.
|
| 390 |
+
|
| 391 |
+
Args:
|
| 392 |
+
in_channels: Number of input channels.
|
| 393 |
+
out_channels: Number of output channels.
|
| 394 |
+
kernel_size: Kernel size of the large kernel conv branch.
|
| 395 |
+
stride: Stride size. Default: 1
|
| 396 |
+
groups: Group number. Default: 1
|
| 397 |
+
small_kernel: Kernel size of small kernel conv branch.
|
| 398 |
+
inference_mode: If True, instantiates model in inference mode. Default: ``False``
|
| 399 |
+
activation: Activation module. Default: ``nn.GELU``
|
| 400 |
+
"""
|
| 401 |
+
super(ReparamLargeKernelConv, self).__init__()
|
| 402 |
+
|
| 403 |
+
self.stride = stride
|
| 404 |
+
self.groups = groups
|
| 405 |
+
self.in_channels = in_channels
|
| 406 |
+
self.out_channels = out_channels
|
| 407 |
+
self.activation = activation
|
| 408 |
+
|
| 409 |
+
self.kernel_size = kernel_size
|
| 410 |
+
self.small_kernel = small_kernel
|
| 411 |
+
self.padding = kernel_size // 2
|
| 412 |
+
|
| 413 |
+
# Check if SE is requested
|
| 414 |
+
if use_se:
|
| 415 |
+
self.se = SqueezeExcite(out_channels, rd_ratio=0.25)
|
| 416 |
+
else:
|
| 417 |
+
self.se = nn.Identity()
|
| 418 |
+
|
| 419 |
+
if inference_mode:
|
| 420 |
+
self.lkb_reparam = nn.Conv2d(
|
| 421 |
+
in_channels=in_channels,
|
| 422 |
+
out_channels=out_channels,
|
| 423 |
+
kernel_size=kernel_size,
|
| 424 |
+
stride=stride,
|
| 425 |
+
padding=self.padding,
|
| 426 |
+
dilation=1,
|
| 427 |
+
groups=groups,
|
| 428 |
+
bias=True,
|
| 429 |
+
)
|
| 430 |
+
else:
|
| 431 |
+
self.lkb_origin = self._conv_bn(
|
| 432 |
+
kernel_size=kernel_size, padding=self.padding
|
| 433 |
+
)
|
| 434 |
+
if small_kernel is not None:
|
| 435 |
+
assert (
|
| 436 |
+
small_kernel <= kernel_size
|
| 437 |
+
), "The kernel size for re-param cannot be larger than the large kernel!"
|
| 438 |
+
self.small_conv = self._conv_bn(
|
| 439 |
+
kernel_size=small_kernel, padding=small_kernel // 2
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 443 |
+
"""Apply forward pass."""
|
| 444 |
+
if hasattr(self, "lkb_reparam"):
|
| 445 |
+
out = self.lkb_reparam(x)
|
| 446 |
+
else:
|
| 447 |
+
out = self.lkb_origin(x)
|
| 448 |
+
if hasattr(self, "small_conv"):
|
| 449 |
+
out += self.small_conv(x)
|
| 450 |
+
|
| 451 |
+
return self.activation(self.se(out))
|
| 452 |
+
|
| 453 |
+
def get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 454 |
+
"""Method to obtain re-parameterized kernel and bias.
|
| 455 |
+
Reference: https://github.com/DingXiaoH/RepLKNet-pytorch
|
| 456 |
+
|
| 457 |
+
Returns:
|
| 458 |
+
Tuple of (kernel, bias) after fusing branches.
|
| 459 |
+
"""
|
| 460 |
+
eq_k, eq_b = self._fuse_bn(self.lkb_origin.conv, self.lkb_origin.bn)
|
| 461 |
+
if hasattr(self, "small_conv"):
|
| 462 |
+
small_k, small_b = self._fuse_bn(self.small_conv.conv, self.small_conv.bn)
|
| 463 |
+
eq_b += small_b
|
| 464 |
+
eq_k += nn.functional.pad(
|
| 465 |
+
small_k, [(self.kernel_size - self.small_kernel) // 2] * 4
|
| 466 |
+
)
|
| 467 |
+
return eq_k, eq_b
|
| 468 |
+
|
| 469 |
+
def reparameterize(self) -> None:
|
| 470 |
+
"""
|
| 471 |
+
Following works like `RepVGG: Making VGG-style ConvNets Great Again` -
|
| 472 |
+
https://arxiv.org/pdf/2101.03697.pdf. We re-parameterize multi-branched
|
| 473 |
+
architecture used at training time to obtain a plain CNN-like structure
|
| 474 |
+
for inference.
|
| 475 |
+
"""
|
| 476 |
+
eq_k, eq_b = self.get_kernel_bias()
|
| 477 |
+
self.lkb_reparam = nn.Conv2d(
|
| 478 |
+
in_channels=self.in_channels,
|
| 479 |
+
out_channels=self.out_channels,
|
| 480 |
+
kernel_size=self.kernel_size,
|
| 481 |
+
stride=self.stride,
|
| 482 |
+
padding=self.padding,
|
| 483 |
+
dilation=self.lkb_origin.conv.dilation,
|
| 484 |
+
groups=self.groups,
|
| 485 |
+
bias=True,
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
+
self.lkb_reparam.weight.data = eq_k
|
| 489 |
+
self.lkb_reparam.bias.data = eq_b
|
| 490 |
+
self.__delattr__("lkb_origin")
|
| 491 |
+
if hasattr(self, "small_conv"):
|
| 492 |
+
self.__delattr__("small_conv")
|
| 493 |
+
|
| 494 |
+
@staticmethod
|
| 495 |
+
def _fuse_bn(
|
| 496 |
+
conv: torch.Tensor, bn: nn.BatchNorm2d
|
| 497 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 498 |
+
"""Method to fuse batchnorm layer with conv layer.
|
| 499 |
+
|
| 500 |
+
Args:
|
| 501 |
+
conv: Convolutional kernel weights.
|
| 502 |
+
bn: Batchnorm 2d layer.
|
| 503 |
+
|
| 504 |
+
Returns:
|
| 505 |
+
Tuple of (kernel, bias) after fusing batchnorm.
|
| 506 |
+
"""
|
| 507 |
+
kernel = conv.weight
|
| 508 |
+
running_mean = bn.running_mean
|
| 509 |
+
running_var = bn.running_var
|
| 510 |
+
gamma = bn.weight
|
| 511 |
+
beta = bn.bias
|
| 512 |
+
eps = bn.eps
|
| 513 |
+
std = (running_var + eps).sqrt()
|
| 514 |
+
t = (gamma / std).reshape(-1, 1, 1, 1)
|
| 515 |
+
return kernel * t, beta - running_mean * gamma / std
|
| 516 |
+
|
| 517 |
+
def _conv_bn(self, kernel_size: int, padding: int = 0) -> nn.Sequential:
|
| 518 |
+
"""Helper method to construct conv-batchnorm layers.
|
| 519 |
+
|
| 520 |
+
Args:
|
| 521 |
+
kernel_size: Size of the convolution kernel.
|
| 522 |
+
padding: Zero-padding size.
|
| 523 |
+
|
| 524 |
+
Returns:
|
| 525 |
+
A nn.Sequential Conv-BN module.
|
| 526 |
+
"""
|
| 527 |
+
# Fallback, sometimes batchnorm tensors
|
| 528 |
+
# do not get instantiated correctly on some processes
|
| 529 |
+
# when using deepspeed + accelerate
|
| 530 |
+
norm_layer = nn.BatchNorm2d(num_features=self.out_channels)
|
| 531 |
+
if norm_layer.weight.shape[0] == 0:
|
| 532 |
+
norm_layer.weight = nn.Parameter(torch.zeros(self.out_channels))
|
| 533 |
+
if norm_layer.bias.shape[0] == 0:
|
| 534 |
+
norm_layer.bias = nn.Parameter(torch.zeros(self.out_channels))
|
| 535 |
+
|
| 536 |
+
mod_list = nn.Sequential()
|
| 537 |
+
mod_list.add_module(
|
| 538 |
+
"conv",
|
| 539 |
+
nn.Conv2d(
|
| 540 |
+
in_channels=self.in_channels,
|
| 541 |
+
out_channels=self.out_channels,
|
| 542 |
+
kernel_size=kernel_size,
|
| 543 |
+
stride=self.stride,
|
| 544 |
+
padding=padding,
|
| 545 |
+
groups=self.groups,
|
| 546 |
+
bias=False,
|
| 547 |
+
),
|
| 548 |
+
)
|
| 549 |
+
mod_list.add_module("bn", norm_layer)
|
| 550 |
+
return mod_list
|
| 551 |
+
|
| 552 |
+
|
| 553 |
+
def convolutional_stem(
|
| 554 |
+
in_channels: int, out_channels: int, inference_mode: bool = False, use_scale_branch: bool = True,
|
| 555 |
+
) -> nn.Sequential:
|
| 556 |
+
"""Build convolutional stem with MobileOne blocks.
|
| 557 |
+
|
| 558 |
+
Args:
|
| 559 |
+
in_channels: Number of input channels.
|
| 560 |
+
out_channels: Number of output channels.
|
| 561 |
+
inference_mode: Flag to instantiate model in inference mode. Default: ``False``
|
| 562 |
+
|
| 563 |
+
Returns:
|
| 564 |
+
nn.Sequential object with stem elements.
|
| 565 |
+
"""
|
| 566 |
+
return nn.Sequential(
|
| 567 |
+
MobileOneBlock(
|
| 568 |
+
in_channels=in_channels,
|
| 569 |
+
out_channels=out_channels,
|
| 570 |
+
kernel_size=3,
|
| 571 |
+
stride=2,
|
| 572 |
+
padding=1,
|
| 573 |
+
groups=1,
|
| 574 |
+
inference_mode=inference_mode,
|
| 575 |
+
use_se=False,
|
| 576 |
+
num_conv_branches=1,
|
| 577 |
+
use_scale_branch=use_scale_branch
|
| 578 |
+
),
|
| 579 |
+
MobileOneBlock(
|
| 580 |
+
in_channels=out_channels,
|
| 581 |
+
out_channels=out_channels,
|
| 582 |
+
kernel_size=3,
|
| 583 |
+
stride=2,
|
| 584 |
+
padding=1,
|
| 585 |
+
groups=out_channels,
|
| 586 |
+
inference_mode=inference_mode,
|
| 587 |
+
use_se=False,
|
| 588 |
+
num_conv_branches=1,
|
| 589 |
+
use_scale_branch=use_scale_branch
|
| 590 |
+
),
|
| 591 |
+
MobileOneBlock(
|
| 592 |
+
in_channels=out_channels,
|
| 593 |
+
out_channels=out_channels,
|
| 594 |
+
kernel_size=1,
|
| 595 |
+
stride=1,
|
| 596 |
+
padding=0,
|
| 597 |
+
groups=1,
|
| 598 |
+
inference_mode=inference_mode,
|
| 599 |
+
use_se=False,
|
| 600 |
+
num_conv_branches=1,
|
| 601 |
+
use_scale_branch=use_scale_branch
|
| 602 |
+
),
|
| 603 |
+
)
|
| 604 |
+
|
| 605 |
+
|
| 606 |
+
class LayerNormChannel(nn.Module):
|
| 607 |
+
"""
|
| 608 |
+
LayerNorm only for Channel Dimension.
|
| 609 |
+
Input: tensor in shape [B, C, H, W]
|
| 610 |
+
"""
|
| 611 |
+
def __init__(self, num_features, eps=1e-05) -> None:
|
| 612 |
+
super().__init__()
|
| 613 |
+
self.weight = nn.Parameter(torch.ones(num_features))
|
| 614 |
+
self.bias = nn.Parameter(torch.zeros(num_features))
|
| 615 |
+
self.eps = eps
|
| 616 |
+
|
| 617 |
+
def forward(self, x) -> torch.Tensor:
|
| 618 |
+
u = x.mean(1, keepdim=True)
|
| 619 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
| 620 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
| 621 |
+
x = self.weight.unsqueeze(-1).unsqueeze(-1) * x \
|
| 622 |
+
+ self.bias.unsqueeze(-1).unsqueeze(-1)
|
| 623 |
+
return x
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
class MHSA(nn.Module):
|
| 627 |
+
"""Multi-headed Self Attention module.
|
| 628 |
+
|
| 629 |
+
Source modified from:
|
| 630 |
+
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
| 631 |
+
"""
|
| 632 |
+
|
| 633 |
+
def __init__(
|
| 634 |
+
self,
|
| 635 |
+
dim: int,
|
| 636 |
+
head_dim: int = 32,
|
| 637 |
+
qkv_bias: bool = False,
|
| 638 |
+
attn_drop: float = 0.0,
|
| 639 |
+
proj_drop: float = 0.0,
|
| 640 |
+
) -> None:
|
| 641 |
+
"""Build MHSA module that can handle 3D or 4D input tensors.
|
| 642 |
+
|
| 643 |
+
Args:
|
| 644 |
+
dim: Number of embedding dimensions.
|
| 645 |
+
head_dim: Number of hidden dimensions per head. Default: ``32``
|
| 646 |
+
qkv_bias: Use bias or not. Default: ``False``
|
| 647 |
+
attn_drop: Dropout rate for attention tensor.
|
| 648 |
+
proj_drop: Dropout rate for projection tensor.
|
| 649 |
+
"""
|
| 650 |
+
super().__init__()
|
| 651 |
+
assert dim % head_dim == 0, "dim should be divisible by head_dim"
|
| 652 |
+
self.head_dim = head_dim
|
| 653 |
+
self.num_heads = dim // head_dim
|
| 654 |
+
self.scale = head_dim**-0.5
|
| 655 |
+
|
| 656 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 657 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 658 |
+
self.proj = nn.Linear(dim, dim)
|
| 659 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 660 |
+
|
| 661 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 662 |
+
shape = x.shape
|
| 663 |
+
B, C, H, W = shape
|
| 664 |
+
N = H * W
|
| 665 |
+
if len(shape) == 4:
|
| 666 |
+
x = torch.flatten(x, start_dim=2).transpose(-2, -1) # (B, N, C)
|
| 667 |
+
qkv = (
|
| 668 |
+
self.qkv(x)
|
| 669 |
+
.reshape(B, N, 3, self.num_heads, self.head_dim)
|
| 670 |
+
.permute(2, 0, 3, 1, 4)
|
| 671 |
+
)
|
| 672 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
| 673 |
+
|
| 674 |
+
# trick here to make [email protected] more stable
|
| 675 |
+
attn = (q * self.scale) @ k.transpose(-2, -1)
|
| 676 |
+
attn = attn.softmax(dim=-1)
|
| 677 |
+
attn = self.attn_drop(attn)
|
| 678 |
+
|
| 679 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
| 680 |
+
x = self.proj(x)
|
| 681 |
+
x = self.proj_drop(x)
|
| 682 |
+
if len(shape) == 4:
|
| 683 |
+
x = x.transpose(-2, -1).reshape(B, C, H, W)
|
| 684 |
+
|
| 685 |
+
return x
|
| 686 |
+
|
| 687 |
+
|
| 688 |
+
class PatchEmbed(nn.Module):
|
| 689 |
+
"""Convolutional patch embedding layer."""
|
| 690 |
+
|
| 691 |
+
def __init__(
|
| 692 |
+
self,
|
| 693 |
+
patch_size: int,
|
| 694 |
+
stride: int,
|
| 695 |
+
in_channels: int,
|
| 696 |
+
embed_dim: int,
|
| 697 |
+
inference_mode: bool = False,
|
| 698 |
+
use_se: bool = False,
|
| 699 |
+
) -> None:
|
| 700 |
+
"""Build patch embedding layer.
|
| 701 |
+
|
| 702 |
+
Args:
|
| 703 |
+
patch_size: Patch size for embedding computation.
|
| 704 |
+
stride: Stride for convolutional embedding layer.
|
| 705 |
+
in_channels: Number of channels of input tensor.
|
| 706 |
+
embed_dim: Number of embedding dimensions.
|
| 707 |
+
inference_mode: Flag to instantiate model in inference mode. Default: ``False``
|
| 708 |
+
use_se: If ``True`` SE block will be used.
|
| 709 |
+
"""
|
| 710 |
+
super().__init__()
|
| 711 |
+
block = list()
|
| 712 |
+
block.append(
|
| 713 |
+
ReparamLargeKernelConv(
|
| 714 |
+
in_channels=in_channels,
|
| 715 |
+
out_channels=embed_dim,
|
| 716 |
+
kernel_size=patch_size,
|
| 717 |
+
stride=stride,
|
| 718 |
+
groups=in_channels,
|
| 719 |
+
small_kernel=3,
|
| 720 |
+
inference_mode=inference_mode,
|
| 721 |
+
use_se=use_se,
|
| 722 |
+
)
|
| 723 |
+
)
|
| 724 |
+
block.append(
|
| 725 |
+
MobileOneBlock(
|
| 726 |
+
in_channels=embed_dim,
|
| 727 |
+
out_channels=embed_dim,
|
| 728 |
+
kernel_size=1,
|
| 729 |
+
stride=1,
|
| 730 |
+
padding=0,
|
| 731 |
+
groups=1,
|
| 732 |
+
inference_mode=inference_mode,
|
| 733 |
+
use_se=False,
|
| 734 |
+
num_conv_branches=1,
|
| 735 |
+
)
|
| 736 |
+
)
|
| 737 |
+
self.proj = nn.Sequential(*block)
|
| 738 |
+
|
| 739 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 740 |
+
x = self.proj(x)
|
| 741 |
+
return x
|
| 742 |
+
|
| 743 |
+
|
| 744 |
+
class RepMixer(nn.Module):
|
| 745 |
+
"""Reparameterizable token mixer.
|
| 746 |
+
|
| 747 |
+
For more details, please refer to our paper:
|
| 748 |
+
`FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization <https://arxiv.org/pdf/2303.14189.pdf>`_
|
| 749 |
+
"""
|
| 750 |
+
|
| 751 |
+
def __init__(
|
| 752 |
+
self,
|
| 753 |
+
dim,
|
| 754 |
+
kernel_size=3,
|
| 755 |
+
use_layer_scale=True,
|
| 756 |
+
layer_scale_init_value=1e-5,
|
| 757 |
+
inference_mode: bool = False,
|
| 758 |
+
):
|
| 759 |
+
"""Build RepMixer Module.
|
| 760 |
+
|
| 761 |
+
Args:
|
| 762 |
+
dim: Input feature map dimension. :math:`C_{in}` from an expected input of size :math:`(B, C_{in}, H, W)`.
|
| 763 |
+
kernel_size: Kernel size for spatial mixing. Default: 3
|
| 764 |
+
use_layer_scale: If True, learnable layer scale is used. Default: ``True``
|
| 765 |
+
layer_scale_init_value: Initial value for layer scale. Default: 1e-5
|
| 766 |
+
inference_mode: If True, instantiates model in inference mode. Default: ``False``
|
| 767 |
+
"""
|
| 768 |
+
super().__init__()
|
| 769 |
+
self.dim = dim
|
| 770 |
+
self.kernel_size = kernel_size
|
| 771 |
+
self.inference_mode = inference_mode
|
| 772 |
+
|
| 773 |
+
if inference_mode:
|
| 774 |
+
self.reparam_conv = nn.Conv2d(
|
| 775 |
+
in_channels=self.dim,
|
| 776 |
+
out_channels=self.dim,
|
| 777 |
+
kernel_size=self.kernel_size,
|
| 778 |
+
stride=1,
|
| 779 |
+
padding=self.kernel_size // 2,
|
| 780 |
+
groups=self.dim,
|
| 781 |
+
bias=True,
|
| 782 |
+
)
|
| 783 |
+
else:
|
| 784 |
+
self.norm = MobileOneBlock(
|
| 785 |
+
dim,
|
| 786 |
+
dim,
|
| 787 |
+
kernel_size,
|
| 788 |
+
padding=kernel_size // 2,
|
| 789 |
+
groups=dim,
|
| 790 |
+
use_act=False,
|
| 791 |
+
use_scale_branch=False,
|
| 792 |
+
num_conv_branches=0,
|
| 793 |
+
)
|
| 794 |
+
self.mixer = MobileOneBlock(
|
| 795 |
+
dim,
|
| 796 |
+
dim,
|
| 797 |
+
kernel_size,
|
| 798 |
+
padding=kernel_size // 2,
|
| 799 |
+
groups=dim,
|
| 800 |
+
use_act=False,
|
| 801 |
+
)
|
| 802 |
+
self.use_layer_scale = use_layer_scale
|
| 803 |
+
if use_layer_scale:
|
| 804 |
+
self.layer_scale = nn.Parameter(
|
| 805 |
+
layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True
|
| 806 |
+
)
|
| 807 |
+
|
| 808 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 809 |
+
if hasattr(self, "reparam_conv"):
|
| 810 |
+
x = self.reparam_conv(x)
|
| 811 |
+
return x
|
| 812 |
+
else:
|
| 813 |
+
if self.use_layer_scale:
|
| 814 |
+
x = x + self.layer_scale * (self.mixer(x) - self.norm(x))
|
| 815 |
+
else:
|
| 816 |
+
x = x + self.mixer(x) - self.norm(x)
|
| 817 |
+
return x
|
| 818 |
+
|
| 819 |
+
def reparameterize(self) -> None:
|
| 820 |
+
"""Reparameterize mixer and norm into a single
|
| 821 |
+
convolutional layer for efficient inference.
|
| 822 |
+
"""
|
| 823 |
+
if self.inference_mode:
|
| 824 |
+
return
|
| 825 |
+
|
| 826 |
+
self.mixer.reparameterize()
|
| 827 |
+
self.norm.reparameterize()
|
| 828 |
+
|
| 829 |
+
if self.use_layer_scale:
|
| 830 |
+
w = self.mixer.id_tensor + self.layer_scale.unsqueeze(-1) * (
|
| 831 |
+
self.mixer.reparam_conv.weight - self.norm.reparam_conv.weight
|
| 832 |
+
)
|
| 833 |
+
b = torch.squeeze(self.layer_scale) * (
|
| 834 |
+
self.mixer.reparam_conv.bias - self.norm.reparam_conv.bias
|
| 835 |
+
)
|
| 836 |
+
else:
|
| 837 |
+
w = (
|
| 838 |
+
self.mixer.id_tensor
|
| 839 |
+
+ self.mixer.reparam_conv.weight
|
| 840 |
+
- self.norm.reparam_conv.weight
|
| 841 |
+
)
|
| 842 |
+
b = self.mixer.reparam_conv.bias - self.norm.reparam_conv.bias
|
| 843 |
+
|
| 844 |
+
self.reparam_conv = nn.Conv2d(
|
| 845 |
+
in_channels=self.dim,
|
| 846 |
+
out_channels=self.dim,
|
| 847 |
+
kernel_size=self.kernel_size,
|
| 848 |
+
stride=1,
|
| 849 |
+
padding=self.kernel_size // 2,
|
| 850 |
+
groups=self.dim,
|
| 851 |
+
bias=True,
|
| 852 |
+
)
|
| 853 |
+
self.reparam_conv.weight.data = w
|
| 854 |
+
self.reparam_conv.bias.data = b
|
| 855 |
+
|
| 856 |
+
self.__delattr__("mixer")
|
| 857 |
+
self.__delattr__("norm")
|
| 858 |
+
if self.use_layer_scale:
|
| 859 |
+
self.__delattr__("layer_scale")
|
| 860 |
+
|
| 861 |
+
|
| 862 |
+
class ConvFFN(nn.Module):
|
| 863 |
+
"""Convolutional FFN Module."""
|
| 864 |
+
|
| 865 |
+
def __init__(
|
| 866 |
+
self,
|
| 867 |
+
in_channels: int,
|
| 868 |
+
hidden_channels: Optional[int] = None,
|
| 869 |
+
out_channels: Optional[int] = None,
|
| 870 |
+
act_layer: nn.Module = nn.GELU,
|
| 871 |
+
drop: float = 0.0,
|
| 872 |
+
) -> None:
|
| 873 |
+
"""Build convolutional FFN module.
|
| 874 |
+
|
| 875 |
+
Args:
|
| 876 |
+
in_channels: Number of input channels.
|
| 877 |
+
hidden_channels: Number of channels after expansion. Default: None
|
| 878 |
+
out_channels: Number of output channels. Default: None
|
| 879 |
+
act_layer: Activation layer. Default: ``GELU``
|
| 880 |
+
drop: Dropout rate. Default: ``0.0``.
|
| 881 |
+
"""
|
| 882 |
+
super().__init__()
|
| 883 |
+
out_channels = out_channels or in_channels
|
| 884 |
+
hidden_channels = hidden_channels or in_channels
|
| 885 |
+
self.conv = nn.Sequential()
|
| 886 |
+
self.conv.add_module(
|
| 887 |
+
"conv",
|
| 888 |
+
nn.Conv2d(
|
| 889 |
+
in_channels=in_channels,
|
| 890 |
+
out_channels=out_channels,
|
| 891 |
+
kernel_size=7,
|
| 892 |
+
padding=3,
|
| 893 |
+
groups=in_channels,
|
| 894 |
+
bias=False,
|
| 895 |
+
),
|
| 896 |
+
)
|
| 897 |
+
|
| 898 |
+
# Fallback, sometimes batchnorm tensors
|
| 899 |
+
# do not get instantiated correctly on some processes
|
| 900 |
+
# when using deepspeed + accelerate
|
| 901 |
+
norm_layer = nn.BatchNorm2d(num_features=out_channels)
|
| 902 |
+
if norm_layer.weight.shape[0] == 0:
|
| 903 |
+
norm_layer.weight = nn.Parameter(torch.zeros(out_channels))
|
| 904 |
+
if norm_layer.bias.shape[0] == 0:
|
| 905 |
+
norm_layer.bias = nn.Parameter(torch.zeros(out_channels))
|
| 906 |
+
|
| 907 |
+
self.conv.add_module("bn", norm_layer)
|
| 908 |
+
self.fc1 = nn.Conv2d(in_channels, hidden_channels, kernel_size=1)
|
| 909 |
+
self.act = act_layer()
|
| 910 |
+
self.fc2 = nn.Conv2d(hidden_channels, out_channels, kernel_size=1)
|
| 911 |
+
self.drop = nn.Dropout(drop)
|
| 912 |
+
self.apply(self._init_weights)
|
| 913 |
+
|
| 914 |
+
def _init_weights(self, m: nn.Module) -> None:
|
| 915 |
+
if isinstance(m, nn.Conv2d):
|
| 916 |
+
normal_(m.weight, std=0.02)
|
| 917 |
+
if m.bias is not None:
|
| 918 |
+
nn.init.constant_(m.bias, 0)
|
| 919 |
+
|
| 920 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 921 |
+
x = self.conv(x)
|
| 922 |
+
x = self.fc1(x)
|
| 923 |
+
x = self.act(x)
|
| 924 |
+
x = self.drop(x)
|
| 925 |
+
x = self.fc2(x)
|
| 926 |
+
x = self.drop(x)
|
| 927 |
+
return x
|
| 928 |
+
|
| 929 |
+
|
| 930 |
+
class RepCPE(nn.Module):
|
| 931 |
+
"""Implementation of conditional positional encoding.
|
| 932 |
+
|
| 933 |
+
For more details refer to paper:
|
| 934 |
+
`Conditional Positional Encodings for Vision Transformers <https://arxiv.org/pdf/2102.10882.pdf>`_
|
| 935 |
+
|
| 936 |
+
In our implementation, we can reparameterize this module to eliminate a skip connection.
|
| 937 |
+
"""
|
| 938 |
+
|
| 939 |
+
def __init__(
|
| 940 |
+
self,
|
| 941 |
+
in_channels: int,
|
| 942 |
+
embed_dim: int = 768,
|
| 943 |
+
spatial_shape: Union[int, Tuple[int, int]] = (7, 7),
|
| 944 |
+
inference_mode=False,
|
| 945 |
+
) -> None:
|
| 946 |
+
"""Build reparameterizable conditional positional encoding
|
| 947 |
+
|
| 948 |
+
Args:
|
| 949 |
+
in_channels: Number of input channels.
|
| 950 |
+
embed_dim: Number of embedding dimensions. Default: 768
|
| 951 |
+
spatial_shape: Spatial shape of kernel for positional encoding. Default: (7, 7)
|
| 952 |
+
inference_mode: Flag to instantiate block in inference mode. Default: ``False``
|
| 953 |
+
"""
|
| 954 |
+
super(RepCPE, self).__init__()
|
| 955 |
+
if isinstance(spatial_shape, int):
|
| 956 |
+
spatial_shape = tuple([spatial_shape] * 2)
|
| 957 |
+
assert isinstance(spatial_shape, Tuple), (
|
| 958 |
+
f'"spatial_shape" must by a sequence or int, '
|
| 959 |
+
f"get {type(spatial_shape)} instead."
|
| 960 |
+
)
|
| 961 |
+
assert len(spatial_shape) == 2, (
|
| 962 |
+
f'Length of "spatial_shape" should be 2, '
|
| 963 |
+
f"got {len(spatial_shape)} instead."
|
| 964 |
+
)
|
| 965 |
+
|
| 966 |
+
self.spatial_shape = spatial_shape
|
| 967 |
+
self.embed_dim = embed_dim
|
| 968 |
+
self.in_channels = in_channels
|
| 969 |
+
self.groups = embed_dim
|
| 970 |
+
|
| 971 |
+
if inference_mode:
|
| 972 |
+
self.reparam_conv = nn.Conv2d(
|
| 973 |
+
in_channels=self.in_channels,
|
| 974 |
+
out_channels=self.embed_dim,
|
| 975 |
+
kernel_size=self.spatial_shape,
|
| 976 |
+
stride=1,
|
| 977 |
+
padding=int(self.spatial_shape[0] // 2),
|
| 978 |
+
groups=self.embed_dim,
|
| 979 |
+
bias=True,
|
| 980 |
+
)
|
| 981 |
+
else:
|
| 982 |
+
self.pe = nn.Conv2d(
|
| 983 |
+
in_channels,
|
| 984 |
+
embed_dim,
|
| 985 |
+
spatial_shape,
|
| 986 |
+
1,
|
| 987 |
+
int(spatial_shape[0] // 2),
|
| 988 |
+
bias=True,
|
| 989 |
+
groups=embed_dim,
|
| 990 |
+
)
|
| 991 |
+
|
| 992 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 993 |
+
if hasattr(self, "reparam_conv"):
|
| 994 |
+
x = self.reparam_conv(x)
|
| 995 |
+
return x
|
| 996 |
+
else:
|
| 997 |
+
x = self.pe(x) + x
|
| 998 |
+
return x
|
| 999 |
+
|
| 1000 |
+
def reparameterize(self) -> None:
|
| 1001 |
+
# Build equivalent Id tensor
|
| 1002 |
+
input_dim = self.in_channels // self.groups
|
| 1003 |
+
kernel_value = torch.zeros(
|
| 1004 |
+
(
|
| 1005 |
+
self.in_channels,
|
| 1006 |
+
input_dim,
|
| 1007 |
+
self.spatial_shape[0],
|
| 1008 |
+
self.spatial_shape[1],
|
| 1009 |
+
),
|
| 1010 |
+
dtype=self.pe.weight.dtype,
|
| 1011 |
+
device=self.pe.weight.device,
|
| 1012 |
+
)
|
| 1013 |
+
for i in range(self.in_channels):
|
| 1014 |
+
kernel_value[
|
| 1015 |
+
i,
|
| 1016 |
+
i % input_dim,
|
| 1017 |
+
self.spatial_shape[0] // 2,
|
| 1018 |
+
self.spatial_shape[1] // 2,
|
| 1019 |
+
] = 1
|
| 1020 |
+
id_tensor = kernel_value
|
| 1021 |
+
|
| 1022 |
+
# Reparameterize Id tensor and conv
|
| 1023 |
+
w_final = id_tensor + self.pe.weight
|
| 1024 |
+
b_final = self.pe.bias
|
| 1025 |
+
|
| 1026 |
+
# Introduce reparam conv
|
| 1027 |
+
self.reparam_conv = nn.Conv2d(
|
| 1028 |
+
in_channels=self.in_channels,
|
| 1029 |
+
out_channels=self.embed_dim,
|
| 1030 |
+
kernel_size=self.spatial_shape,
|
| 1031 |
+
stride=1,
|
| 1032 |
+
padding=int(self.spatial_shape[0] // 2),
|
| 1033 |
+
groups=self.embed_dim,
|
| 1034 |
+
bias=True,
|
| 1035 |
+
)
|
| 1036 |
+
self.reparam_conv.weight.data = w_final
|
| 1037 |
+
self.reparam_conv.bias.data = b_final
|
| 1038 |
+
|
| 1039 |
+
self.__delattr__("pe")
|
| 1040 |
+
|
| 1041 |
+
|
| 1042 |
+
class RepMixerBlock(nn.Module):
|
| 1043 |
+
"""Implementation of Metaformer block with RepMixer as token mixer.
|
| 1044 |
+
|
| 1045 |
+
For more details on Metaformer structure, please refer to:
|
| 1046 |
+
`MetaFormer Is Actually What You Need for Vision <https://arxiv.org/pdf/2111.11418.pdf>`_
|
| 1047 |
+
"""
|
| 1048 |
+
|
| 1049 |
+
def __init__(
|
| 1050 |
+
self,
|
| 1051 |
+
dim: int,
|
| 1052 |
+
kernel_size: int = 3,
|
| 1053 |
+
mlp_ratio: float = 4.0,
|
| 1054 |
+
act_layer: nn.Module = nn.GELU,
|
| 1055 |
+
drop: float = 0.0,
|
| 1056 |
+
drop_path: float = 0.0,
|
| 1057 |
+
use_layer_scale: bool = True,
|
| 1058 |
+
layer_scale_init_value: float = 1e-5,
|
| 1059 |
+
inference_mode: bool = False,
|
| 1060 |
+
):
|
| 1061 |
+
"""Build RepMixer Block.
|
| 1062 |
+
|
| 1063 |
+
Args:
|
| 1064 |
+
dim: Number of embedding dimensions.
|
| 1065 |
+
kernel_size: Kernel size for repmixer. Default: 3
|
| 1066 |
+
mlp_ratio: MLP expansion ratio. Default: 4.0
|
| 1067 |
+
act_layer: Activation layer. Default: ``nn.GELU``
|
| 1068 |
+
drop: Dropout rate. Default: 0.0
|
| 1069 |
+
drop_path: Drop path rate. Default: 0.0
|
| 1070 |
+
use_layer_scale: Flag to turn on layer scale. Default: ``True``
|
| 1071 |
+
layer_scale_init_value: Layer scale value at initialization. Default: 1e-5
|
| 1072 |
+
inference_mode: Flag to instantiate block in inference mode. Default: ``False``
|
| 1073 |
+
"""
|
| 1074 |
+
|
| 1075 |
+
super().__init__()
|
| 1076 |
+
|
| 1077 |
+
self.token_mixer = RepMixer(
|
| 1078 |
+
dim,
|
| 1079 |
+
kernel_size=kernel_size,
|
| 1080 |
+
use_layer_scale=use_layer_scale,
|
| 1081 |
+
layer_scale_init_value=layer_scale_init_value,
|
| 1082 |
+
inference_mode=inference_mode,
|
| 1083 |
+
)
|
| 1084 |
+
|
| 1085 |
+
assert mlp_ratio > 0, "MLP ratio should be greater than 0, found: {}".format(
|
| 1086 |
+
mlp_ratio
|
| 1087 |
+
)
|
| 1088 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 1089 |
+
self.convffn = ConvFFN(
|
| 1090 |
+
in_channels=dim,
|
| 1091 |
+
hidden_channels=mlp_hidden_dim,
|
| 1092 |
+
act_layer=act_layer,
|
| 1093 |
+
drop=drop,
|
| 1094 |
+
)
|
| 1095 |
+
|
| 1096 |
+
# Drop Path
|
| 1097 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
| 1098 |
+
|
| 1099 |
+
# Layer Scale
|
| 1100 |
+
self.use_layer_scale = use_layer_scale
|
| 1101 |
+
if use_layer_scale:
|
| 1102 |
+
self.layer_scale = nn.Parameter(
|
| 1103 |
+
layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True
|
| 1104 |
+
)
|
| 1105 |
+
|
| 1106 |
+
def forward(self, x):
|
| 1107 |
+
if self.use_layer_scale:
|
| 1108 |
+
x = self.token_mixer(x)
|
| 1109 |
+
x = x + self.drop_path(self.layer_scale * self.convffn(x))
|
| 1110 |
+
else:
|
| 1111 |
+
x = self.token_mixer(x)
|
| 1112 |
+
x = x + self.drop_path(self.convffn(x))
|
| 1113 |
+
return x
|
| 1114 |
+
|
| 1115 |
+
|
| 1116 |
+
class AttentionBlock(nn.Module):
|
| 1117 |
+
"""Implementation of metaformer block with MHSA as token mixer.
|
| 1118 |
+
|
| 1119 |
+
For more details on Metaformer structure, please refer to:
|
| 1120 |
+
`MetaFormer Is Actually What You Need for Vision <https://arxiv.org/pdf/2111.11418.pdf>`_
|
| 1121 |
+
"""
|
| 1122 |
+
|
| 1123 |
+
def __init__(
|
| 1124 |
+
self,
|
| 1125 |
+
dim: int,
|
| 1126 |
+
mlp_ratio: float = 4.0,
|
| 1127 |
+
act_layer: nn.Module = nn.GELU,
|
| 1128 |
+
norm_layer: nn.Module = nn.BatchNorm2d,
|
| 1129 |
+
drop: float = 0.0,
|
| 1130 |
+
drop_path: float = 0.0,
|
| 1131 |
+
use_layer_scale: bool = True,
|
| 1132 |
+
layer_scale_init_value: float = 1e-5,
|
| 1133 |
+
):
|
| 1134 |
+
"""Build Attention Block.
|
| 1135 |
+
|
| 1136 |
+
Args:
|
| 1137 |
+
dim: Number of embedding dimensions.
|
| 1138 |
+
mlp_ratio: MLP expansion ratio. Default: 4.0
|
| 1139 |
+
act_layer: Activation layer. Default: ``nn.GELU``
|
| 1140 |
+
norm_layer: Normalization layer. Default: ``nn.BatchNorm2d``
|
| 1141 |
+
drop: Dropout rate. Default: 0.0
|
| 1142 |
+
drop_path: Drop path rate. Default: 0.0
|
| 1143 |
+
use_layer_scale: Flag to turn on layer scale. Default: ``True``
|
| 1144 |
+
layer_scale_init_value: Layer scale value at initialization. Default: 1e-5
|
| 1145 |
+
"""
|
| 1146 |
+
|
| 1147 |
+
super().__init__()
|
| 1148 |
+
|
| 1149 |
+
# Fallback, sometimes batchnorm tensors
|
| 1150 |
+
# do not get instantiated correctly on some processes
|
| 1151 |
+
# when using deepspeed + accelerate
|
| 1152 |
+
norm_layer_ = norm_layer(num_features=dim)
|
| 1153 |
+
if norm_layer_.weight.shape[0] == 0:
|
| 1154 |
+
norm_layer_.weight = nn.Parameter(torch.zeros(dim))
|
| 1155 |
+
if norm_layer_.bias.shape[0] == 0:
|
| 1156 |
+
norm_layer_.bias = nn.Parameter(torch.zeros(dim))
|
| 1157 |
+
|
| 1158 |
+
self.norm = norm_layer_
|
| 1159 |
+
self.token_mixer = MHSA(dim=dim)
|
| 1160 |
+
|
| 1161 |
+
assert mlp_ratio > 0, "MLP ratio should be greater than 0, found: {}".format(
|
| 1162 |
+
mlp_ratio
|
| 1163 |
+
)
|
| 1164 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 1165 |
+
self.convffn = ConvFFN(
|
| 1166 |
+
in_channels=dim,
|
| 1167 |
+
hidden_channels=mlp_hidden_dim,
|
| 1168 |
+
act_layer=act_layer,
|
| 1169 |
+
drop=drop,
|
| 1170 |
+
)
|
| 1171 |
+
|
| 1172 |
+
# Drop path
|
| 1173 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
| 1174 |
+
|
| 1175 |
+
# Layer Scale
|
| 1176 |
+
self.use_layer_scale = use_layer_scale
|
| 1177 |
+
if use_layer_scale:
|
| 1178 |
+
self.layer_scale_1 = nn.Parameter(
|
| 1179 |
+
layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True
|
| 1180 |
+
)
|
| 1181 |
+
self.layer_scale_2 = nn.Parameter(
|
| 1182 |
+
layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True
|
| 1183 |
+
)
|
| 1184 |
+
|
| 1185 |
+
def forward(self, x):
|
| 1186 |
+
if self.use_layer_scale:
|
| 1187 |
+
x = x + self.drop_path(self.layer_scale_1 * self.token_mixer(self.norm(x)))
|
| 1188 |
+
x = x + self.drop_path(self.layer_scale_2 * self.convffn(x))
|
| 1189 |
+
else:
|
| 1190 |
+
x = x + self.drop_path(self.token_mixer(self.norm(x)))
|
| 1191 |
+
x = x + self.drop_path(self.convffn(x))
|
| 1192 |
+
return x
|
| 1193 |
+
|
| 1194 |
+
|
| 1195 |
+
def basic_blocks(
|
| 1196 |
+
dim: int,
|
| 1197 |
+
block_index: int,
|
| 1198 |
+
num_blocks: List[int],
|
| 1199 |
+
token_mixer_type: str,
|
| 1200 |
+
kernel_size: int = 3,
|
| 1201 |
+
mlp_ratio: float = 4.0,
|
| 1202 |
+
act_layer: nn.Module = nn.GELU,
|
| 1203 |
+
norm_layer: nn.Module = nn.BatchNorm2d,
|
| 1204 |
+
drop_rate: float = 0.0,
|
| 1205 |
+
drop_path_rate: float = 0.0,
|
| 1206 |
+
use_layer_scale: bool = True,
|
| 1207 |
+
layer_scale_init_value: float = 1e-5,
|
| 1208 |
+
inference_mode=False,
|
| 1209 |
+
) -> nn.Sequential:
|
| 1210 |
+
"""Build FastViT blocks within a stage.
|
| 1211 |
+
|
| 1212 |
+
Args:
|
| 1213 |
+
dim: Number of embedding dimensions.
|
| 1214 |
+
block_index: block index.
|
| 1215 |
+
num_blocks: List containing number of blocks per stage.
|
| 1216 |
+
token_mixer_type: Token mixer type.
|
| 1217 |
+
kernel_size: Kernel size for repmixer.
|
| 1218 |
+
mlp_ratio: MLP expansion ratio.
|
| 1219 |
+
act_layer: Activation layer.
|
| 1220 |
+
norm_layer: Normalization layer.
|
| 1221 |
+
drop_rate: Dropout rate.
|
| 1222 |
+
drop_path_rate: Drop path rate.
|
| 1223 |
+
use_layer_scale: Flag to turn on layer scale regularization.
|
| 1224 |
+
layer_scale_init_value: Layer scale value at initialization.
|
| 1225 |
+
inference_mode: Flag to instantiate block in inference mode.
|
| 1226 |
+
|
| 1227 |
+
Returns:
|
| 1228 |
+
nn.Sequential object of all the blocks within the stage.
|
| 1229 |
+
"""
|
| 1230 |
+
blocks = []
|
| 1231 |
+
for block_idx in range(num_blocks[block_index]):
|
| 1232 |
+
block_dpr = (
|
| 1233 |
+
drop_path_rate
|
| 1234 |
+
* (block_idx + sum(num_blocks[:block_index]))
|
| 1235 |
+
/ (sum(num_blocks) - 1)
|
| 1236 |
+
)
|
| 1237 |
+
if token_mixer_type == "repmixer":
|
| 1238 |
+
blocks.append(
|
| 1239 |
+
RepMixerBlock(
|
| 1240 |
+
dim,
|
| 1241 |
+
kernel_size=kernel_size,
|
| 1242 |
+
mlp_ratio=mlp_ratio,
|
| 1243 |
+
act_layer=act_layer,
|
| 1244 |
+
drop=drop_rate,
|
| 1245 |
+
drop_path=block_dpr,
|
| 1246 |
+
use_layer_scale=use_layer_scale,
|
| 1247 |
+
layer_scale_init_value=layer_scale_init_value,
|
| 1248 |
+
inference_mode=inference_mode,
|
| 1249 |
+
)
|
| 1250 |
+
)
|
| 1251 |
+
elif token_mixer_type == "attention":
|
| 1252 |
+
blocks.append(
|
| 1253 |
+
AttentionBlock(
|
| 1254 |
+
dim,
|
| 1255 |
+
mlp_ratio=mlp_ratio,
|
| 1256 |
+
act_layer=act_layer,
|
| 1257 |
+
norm_layer=norm_layer,
|
| 1258 |
+
drop=drop_rate,
|
| 1259 |
+
drop_path=block_dpr,
|
| 1260 |
+
use_layer_scale=use_layer_scale,
|
| 1261 |
+
layer_scale_init_value=layer_scale_init_value,
|
| 1262 |
+
)
|
| 1263 |
+
)
|
| 1264 |
+
else:
|
| 1265 |
+
raise ValueError(
|
| 1266 |
+
"Token mixer type: {} not supported".format(token_mixer_type)
|
| 1267 |
+
)
|
| 1268 |
+
blocks = nn.Sequential(*blocks)
|
| 1269 |
+
return blocks
|
| 1270 |
+
|
| 1271 |
+
|
| 1272 |
+
class GlobalPool2D(nn.Module):
|
| 1273 |
+
"""This class implements global pooling with linear projection."""
|
| 1274 |
+
|
| 1275 |
+
def __init__(self, in_dim: int, out_dim: int, *args, **kwargs) -> None:
|
| 1276 |
+
super().__init__()
|
| 1277 |
+
scale = in_dim**-0.5
|
| 1278 |
+
self.proj = nn.Parameter(scale * torch.randn(size=(in_dim, out_dim)))
|
| 1279 |
+
self.in_dim = in_dim
|
| 1280 |
+
self.out_dim = out_dim
|
| 1281 |
+
|
| 1282 |
+
def pool(self, x) -> Tensor:
|
| 1283 |
+
if x.dim() == 4:
|
| 1284 |
+
dims = [-2, -1]
|
| 1285 |
+
elif x.dim() == 5:
|
| 1286 |
+
dims = [-3, -2, -1]
|
| 1287 |
+
x = torch.mean(x, dim=dims, keepdim=False)
|
| 1288 |
+
return x
|
| 1289 |
+
|
| 1290 |
+
def forward(self, x: Tensor, *args, **kwargs) -> Tensor:
|
| 1291 |
+
# x is of shape [batch, in_dim]
|
| 1292 |
+
assert (
|
| 1293 |
+
x.dim() == 4
|
| 1294 |
+
), "Input should be 4-dimensional (Batch x in_dim x in_height x in_width). Got: {}".format(
|
| 1295 |
+
x.shape
|
| 1296 |
+
)
|
| 1297 |
+
|
| 1298 |
+
# [batch, in_dim, in_height, in_width] --> [batch, in_dim]
|
| 1299 |
+
x = self.pool(x)
|
| 1300 |
+
# [batch, in_dim] x [in_dim, out_dim] --> [batch, out_dim]
|
| 1301 |
+
x = x @ self.proj
|
| 1302 |
+
return x
|
| 1303 |
+
|
| 1304 |
+
|
| 1305 |
+
class FastViT(nn.Module):
|
| 1306 |
+
"""
|
| 1307 |
+
This class implements `FastViT architecture <https://arxiv.org/pdf/2303.14189.pdf>`_
|
| 1308 |
+
"""
|
| 1309 |
+
|
| 1310 |
+
def __init__(
|
| 1311 |
+
self,
|
| 1312 |
+
layers,
|
| 1313 |
+
token_mixers: Tuple[str, ...],
|
| 1314 |
+
embed_dims=None,
|
| 1315 |
+
mlp_ratios=None,
|
| 1316 |
+
downsamples=None,
|
| 1317 |
+
se_downsamples=None,
|
| 1318 |
+
repmixer_kernel_size=3,
|
| 1319 |
+
norm_layer: nn.Module = nn.BatchNorm2d,
|
| 1320 |
+
act_layer: nn.Module = nn.GELU,
|
| 1321 |
+
num_classes=1000,
|
| 1322 |
+
pos_embs=None,
|
| 1323 |
+
down_patch_size=7,
|
| 1324 |
+
down_stride=2,
|
| 1325 |
+
drop_rate=0.0,
|
| 1326 |
+
drop_path_rate=0.0,
|
| 1327 |
+
use_layer_scale=True,
|
| 1328 |
+
layer_scale_init_value=1e-5,
|
| 1329 |
+
init_cfg=None,
|
| 1330 |
+
pretrained=None,
|
| 1331 |
+
cls_ratio=2.0,
|
| 1332 |
+
inference_mode=False,
|
| 1333 |
+
stem_scale_branch=True,
|
| 1334 |
+
**kwargs,
|
| 1335 |
+
) -> None:
|
| 1336 |
+
|
| 1337 |
+
super().__init__()
|
| 1338 |
+
|
| 1339 |
+
self.num_classes = num_classes
|
| 1340 |
+
if len(layers) == 4:
|
| 1341 |
+
self.out_indices = [0, 2, 4, 7]
|
| 1342 |
+
elif len(layers) == 5:
|
| 1343 |
+
self.out_indices = [0, 2, 4, 7, 10]
|
| 1344 |
+
else:
|
| 1345 |
+
raise NotImplementedError("FPN is not implemented for more than 5 stages.")
|
| 1346 |
+
|
| 1347 |
+
if pos_embs is None:
|
| 1348 |
+
pos_embs = [None] * len(layers)
|
| 1349 |
+
|
| 1350 |
+
if se_downsamples is None:
|
| 1351 |
+
se_downsamples = [False] * len(layers)
|
| 1352 |
+
|
| 1353 |
+
# Convolutional stem
|
| 1354 |
+
self.patch_embed = convolutional_stem(3, embed_dims[0], inference_mode,
|
| 1355 |
+
use_scale_branch=stem_scale_branch)
|
| 1356 |
+
|
| 1357 |
+
# Build the main stages of the network architecture
|
| 1358 |
+
network = []
|
| 1359 |
+
for i in range(len(layers)):
|
| 1360 |
+
# Add position embeddings if requested
|
| 1361 |
+
if pos_embs[i] is not None:
|
| 1362 |
+
network.append(
|
| 1363 |
+
pos_embs[i](
|
| 1364 |
+
embed_dims[i], embed_dims[i], inference_mode=inference_mode
|
| 1365 |
+
)
|
| 1366 |
+
)
|
| 1367 |
+
stage = basic_blocks(
|
| 1368 |
+
embed_dims[i],
|
| 1369 |
+
i,
|
| 1370 |
+
layers,
|
| 1371 |
+
token_mixer_type=token_mixers[i],
|
| 1372 |
+
kernel_size=repmixer_kernel_size,
|
| 1373 |
+
mlp_ratio=mlp_ratios[i],
|
| 1374 |
+
act_layer=act_layer,
|
| 1375 |
+
norm_layer=norm_layer,
|
| 1376 |
+
drop_rate=drop_rate,
|
| 1377 |
+
drop_path_rate=drop_path_rate,
|
| 1378 |
+
use_layer_scale=use_layer_scale,
|
| 1379 |
+
layer_scale_init_value=layer_scale_init_value,
|
| 1380 |
+
inference_mode=inference_mode,
|
| 1381 |
+
)
|
| 1382 |
+
network.append(stage)
|
| 1383 |
+
if i >= len(layers) - 1:
|
| 1384 |
+
break
|
| 1385 |
+
|
| 1386 |
+
# Patch merging/downsampling between stages.
|
| 1387 |
+
if downsamples[i] or embed_dims[i] != embed_dims[i + 1]:
|
| 1388 |
+
network.append(
|
| 1389 |
+
PatchEmbed(
|
| 1390 |
+
patch_size=down_patch_size,
|
| 1391 |
+
stride=down_stride,
|
| 1392 |
+
in_channels=embed_dims[i],
|
| 1393 |
+
embed_dim=embed_dims[i + 1],
|
| 1394 |
+
inference_mode=inference_mode,
|
| 1395 |
+
use_se=se_downsamples[i + 1],
|
| 1396 |
+
)
|
| 1397 |
+
)
|
| 1398 |
+
self.network = nn.ModuleList(network)
|
| 1399 |
+
|
| 1400 |
+
# Classifier head
|
| 1401 |
+
self.conv_exp = MobileOneBlock(
|
| 1402 |
+
in_channels=embed_dims[-1],
|
| 1403 |
+
out_channels=int(embed_dims[-1] * cls_ratio),
|
| 1404 |
+
kernel_size=3,
|
| 1405 |
+
stride=1,
|
| 1406 |
+
padding=1,
|
| 1407 |
+
groups=embed_dims[-1],
|
| 1408 |
+
inference_mode=inference_mode,
|
| 1409 |
+
use_se=True,
|
| 1410 |
+
num_conv_branches=1,
|
| 1411 |
+
)
|
| 1412 |
+
self.head = (
|
| 1413 |
+
nn.Linear(int(embed_dims[-1] * cls_ratio), num_classes)
|
| 1414 |
+
if num_classes > 0
|
| 1415 |
+
else nn.Identity()
|
| 1416 |
+
)
|
| 1417 |
+
self.apply(self.cls_init_weights)
|
| 1418 |
+
self.init_cfg = copy.deepcopy(init_cfg)
|
| 1419 |
+
|
| 1420 |
+
def cls_init_weights(self, m: nn.Module) -> None:
|
| 1421 |
+
"""Init. for classification"""
|
| 1422 |
+
if isinstance(m, nn.Linear):
|
| 1423 |
+
normal_(m.weight, std=0.02)
|
| 1424 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 1425 |
+
nn.init.constant_(m.bias, 0)
|
| 1426 |
+
|
| 1427 |
+
def forward_embeddings(self, x: torch.Tensor) -> torch.Tensor:
|
| 1428 |
+
x = self.patch_embed(x)
|
| 1429 |
+
return x
|
| 1430 |
+
|
| 1431 |
+
def forward_tokens(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
| 1432 |
+
for idx, block in enumerate(self.network):
|
| 1433 |
+
x = block(x)
|
| 1434 |
+
return x
|
| 1435 |
+
|
| 1436 |
+
def forward(self, x: torch.Tensor, *args, **kwargs) -> Union[Tensor, Dict[str, Tensor]]:
|
| 1437 |
+
# input embedding
|
| 1438 |
+
x = self.forward_embeddings(x)
|
| 1439 |
+
# through backbone
|
| 1440 |
+
x = self.forward_tokens(x)
|
| 1441 |
+
# for image classification/embedding
|
| 1442 |
+
x = self.conv_exp(x)
|
| 1443 |
+
cls_out = self.head(x)
|
| 1444 |
+
|
| 1445 |
+
out_dict = dict()
|
| 1446 |
+
if kwargs.get("return_image_embeddings", False):
|
| 1447 |
+
out_dict.update({"logits": cls_out})
|
| 1448 |
+
out_dict.update({"image_embeddings": x})
|
| 1449 |
+
return out_dict
|
| 1450 |
+
else:
|
| 1451 |
+
return cls_out
|
| 1452 |
+
|
| 1453 |
+
|
| 1454 |
+
@register_model
|
| 1455 |
+
def fastvithd(pretrained=False, **kwargs):
|
| 1456 |
+
"""Instantiate FastViTHD model variant."""
|
| 1457 |
+
layers = [2, 12, 24, 4, 2]
|
| 1458 |
+
embed_dims = [96, 192, 384, 768, 1536]
|
| 1459 |
+
mlp_ratios = [4, 4, 4, 4, 4]
|
| 1460 |
+
downsamples = [True, True, True, True, True]
|
| 1461 |
+
pos_embs = [None, None, None, partial(RepCPE, spatial_shape=(7, 7)), partial(RepCPE, spatial_shape=(7, 7))]
|
| 1462 |
+
token_mixers = ("repmixer", "repmixer", "repmixer", "attention", "attention")
|
| 1463 |
+
model = FastViT(
|
| 1464 |
+
layers,
|
| 1465 |
+
token_mixers=token_mixers,
|
| 1466 |
+
embed_dims=embed_dims,
|
| 1467 |
+
pos_embs=pos_embs,
|
| 1468 |
+
mlp_ratios=mlp_ratios,
|
| 1469 |
+
downsamples=downsamples,
|
| 1470 |
+
norm_layer=LayerNormChannel,
|
| 1471 |
+
stem_scale_branch=False,
|
| 1472 |
+
inference_mode=True,
|
| 1473 |
+
**kwargs,
|
| 1474 |
+
)
|
| 1475 |
+
model.default_cfg = default_cfgs["fastvit_m"]
|
| 1476 |
+
if pretrained:
|
| 1477 |
+
raise ValueError("Functionality not implemented.")
|
| 1478 |
+
return model
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1b17eb184e6d9be913c405a8bbcccc5baf7a2462bb3ec4d850e02b3a7ed5391a
|
| 3 |
+
size 250290912
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"crop_size": {
|
| 3 |
+
"height": 1024,
|
| 4 |
+
"width": 1024
|
| 5 |
+
},
|
| 6 |
+
"do_center_crop": true,
|
| 7 |
+
"do_convert_rgb": true,
|
| 8 |
+
"do_normalize": true,
|
| 9 |
+
"do_rescale": true,
|
| 10 |
+
"do_resize": true,
|
| 11 |
+
"image_mean": [
|
| 12 |
+
0.0,
|
| 13 |
+
0.0,
|
| 14 |
+
0.0
|
| 15 |
+
],
|
| 16 |
+
"image_processor_type": "CLIPImageProcessor",
|
| 17 |
+
"image_std": [
|
| 18 |
+
1.0,
|
| 19 |
+
1.0,
|
| 20 |
+
1.0
|
| 21 |
+
],
|
| 22 |
+
"resample": 3,
|
| 23 |
+
"rescale_factor": 0.00392156862745098,
|
| 24 |
+
"size": {
|
| 25 |
+
"shortest_edge": 1024
|
| 26 |
+
}
|
| 27 |
+
}
|