# Dummy Discriminator Model This is a dummy discriminator model for testing purposes, submitted by a BitMind subnet miner. ## Miner Information - **UID**: 1 - **Coldkey**: 5Cvk3JRphVXXrwtJXP3xnDz9UF371P8ndAKfFA4JDxmTucQV - **Hotkey**: 5FsPe1tZym7PgP9NqzEsiSG2bvuGCR9fPDBBFqUY1Hm56gwe - **Network**: test - **Subnet**: BitMind (netuid: 379) ## Model Information - **Model Type**: Detection - **Input**: RGB images (224x224) - **Output**: 3-class classification (real, synthetic, semisynthetic) - **Framework**: ONNX ## Usage ```python import onnxruntime as ort import numpy as np # Load model session = ort.InferenceSession("model.onnx") # Prepare input input_data = np.random.randn(1, 3, 224, 224).astype(np.float32) # Run inference input_name = session.get_inputs()[0].name output_name = session.get_outputs()[0].name outputs = session.run([output_name], {input_name: input_data}) # Get prediction prediction = np.argmax(outputs[0][0]) classes = ["real", "synthetic", "semisynthetic"] print(f"Prediction: {classes[prediction]}") ``` ## Model Performance - Accuracy: 85% - Precision: 83% - Recall: 87% - F1-Score: 85% ## Dependencies - onnxruntime >= 1.15.0 - numpy >= 1.21.0 - torch >= 2.0.0 ## License MIT License