{ "model_id": "dummy_discriminator_v1_uid_1", "model_type": "detection", "description": "Dummy discriminator model for testing", "version": "1.0.0", "author": "kenjon", "miner_identity": { "uid": 1, "coldkey": "5Cvk3JRphVXXrwtJXP3xnDz9UF371P8ndAKfFA4JDxmTucQV", "hotkey": "5FsPe1tZym7PgP9NqzEsiSG2bvuGCR9fPDBBFqUY1Hm56gwe", "netuid": 379, "network": "test", "subnet": "BitMind" }, "architecture": { "base_model": "custom_cnn", "num_classes": 3, "input_shape": [ 3, 224, 224 ], "output_shape": [ 3 ], "model_type": "detection" }, "preprocessing": { "normalization": "imagenet", "resize": [ 224, 224 ], "augmentation": [ "random_horizontal_flip" ] }, "training": { "optimizer": "adam", "learning_rate": 0.001, "batch_size": 32, "epochs": 10, "loss_function": "cross_entropy" }, "performance": { "accuracy": 0.85, "precision": 0.83, "recall": 0.87, "f1_score": 0.85 }, "dependencies": { "onnxruntime": ">=1.15.0", "numpy": ">=1.21.0", "torch": ">=2.0.0" }, "usage": { "input_format": "numpy array (3, 224, 224)", "output_format": "numpy array (3,) - probabilities for [real, synthetic, semisynthetic]", "example": "model.predict(image_array)" }, "submission_info": { "submitted_at": "2024-01-01T00:00:00Z", "submission_block": 0, "model_hash": "adf03e2aca622b5ec63e93af27f58a04f2dcd3e20229f1135099d36fe31e5e18", "file_size": 22274 } }