Upload 4 files
Browse files- .gitattributes +1 -0
- config_tiny_greek_news_bert.py +19 -0
- model.safetensors +3 -0
- modeling_tiny_greek_news_bert.py +79 -0
- training_args.bin +0 -0
.gitattributes
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
model.safetensors filter=lfs diff=lfs merge=lfs -text
|
config_tiny_greek_news_bert.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# configuration_tiny_greek_news_bert.py
|
| 2 |
+
from transformers import BertConfig
|
| 3 |
+
|
| 4 |
+
class TinyGreekNewsBertConfig(BertConfig):
|
| 5 |
+
model_type = "tiny_greek_news_bert"
|
| 6 |
+
def __init__(
|
| 7 |
+
self,
|
| 8 |
+
num_labels_class=19,
|
| 9 |
+
num_labels_ner=32,
|
| 10 |
+
ner_loss_weight=3.0,
|
| 11 |
+
**kwargs,
|
| 12 |
+
):
|
| 13 |
+
super().__init__(**kwargs)
|
| 14 |
+
self.num_labels_class = num_labels_class
|
| 15 |
+
self.num_labels_ner = num_labels_ner
|
| 16 |
+
self.ner_loss_weight = ner_loss_weight
|
| 17 |
+
|
| 18 |
+
# 👇 this writes the AutoConfig mapping when you save_pretrained()
|
| 19 |
+
TinyGreekNewsBertConfig.register_for_auto_class()
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:408cce07304b82dc981b3014f463d1d6305366ce83a3c3168f6ac31612125f2b
|
| 3 |
+
size 56478996
|
modeling_tiny_greek_news_bert.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn as nn
|
| 2 |
+
from transformers import BertModel, BertPreTrainedModel
|
| 3 |
+
from transformers import BertConfig, AutoTokenizer
|
| 4 |
+
|
| 5 |
+
class TinyGreekNewsBert(BertPreTrainedModel):
|
| 6 |
+
def __init__(self, config):
|
| 7 |
+
super().__init__(config)
|
| 8 |
+
num_labels_class = config.num_labels_class
|
| 9 |
+
num_labels_ner = config.num_labels_ner
|
| 10 |
+
self.ner_loss_weight = getattr(config, "ner_loss_weight", 3.0)
|
| 11 |
+
self.bert = BertModel(config)
|
| 12 |
+
|
| 13 |
+
# Classification head
|
| 14 |
+
self.class_dropout = nn.Dropout(0.3)
|
| 15 |
+
self.class_fc = nn.Linear(config.hidden_size, 768)
|
| 16 |
+
self.class_relu = nn.ReLU()
|
| 17 |
+
self.classifier = nn.Linear(768, num_labels_class)
|
| 18 |
+
|
| 19 |
+
# NER head
|
| 20 |
+
self.ner_classifier = nn.Linear(config.hidden_size, num_labels_ner)
|
| 21 |
+
|
| 22 |
+
self.init_weights()
|
| 23 |
+
# For normalization
|
| 24 |
+
self.initial_cls_loss = None
|
| 25 |
+
self.initial_ner_loss = None
|
| 26 |
+
def forward(self, input_ids, attention_mask=None, token_type_ids=None,
|
| 27 |
+
labels_class=None, labels_ner=None):
|
| 28 |
+
outputs = self.bert(
|
| 29 |
+
input_ids,
|
| 30 |
+
attention_mask=attention_mask,
|
| 31 |
+
token_type_ids=token_type_ids
|
| 32 |
+
)
|
| 33 |
+
sequence_output = outputs.last_hidden_state # (batch_size, seq_length, hidden_size)
|
| 34 |
+
pooled_output = outputs.pooler_output # (batch_size, hidden_size)
|
| 35 |
+
|
| 36 |
+
# Classification branch
|
| 37 |
+
pooled_output = self.class_dropout(pooled_output)
|
| 38 |
+
x = self.class_fc(pooled_output)
|
| 39 |
+
x = self.class_relu(x)
|
| 40 |
+
logits_class = self.classifier(x)
|
| 41 |
+
|
| 42 |
+
# NER branch
|
| 43 |
+
logits_ner = self.ner_classifier(sequence_output) # (batch_size, seq_length, num_labels_ner)
|
| 44 |
+
|
| 45 |
+
loss = None
|
| 46 |
+
if labels_class is not None and labels_ner is not None:
|
| 47 |
+
# Classification loss
|
| 48 |
+
loss_fct_class = nn.CrossEntropyLoss()
|
| 49 |
+
loss_class = loss_fct_class(logits_class, labels_class)
|
| 50 |
+
|
| 51 |
+
# NER loss: Cross-entropy with ignore_index=-100, summed then averaged over non-pad tokens
|
| 52 |
+
loss_fct_ner = nn.CrossEntropyLoss(ignore_index=-100, reduction='sum')
|
| 53 |
+
ner_loss_sum = loss_fct_ner(
|
| 54 |
+
logits_ner.view(-1, logits_ner.shape[-1]),
|
| 55 |
+
labels_ner.view(-1)
|
| 56 |
+
)
|
| 57 |
+
mask = (labels_ner != -100).view(-1).float()
|
| 58 |
+
loss_ner = ner_loss_sum / (mask.sum() + 1e-9)
|
| 59 |
+
|
| 60 |
+
# Store initial values
|
| 61 |
+
if self.initial_cls_loss is None and self.training:
|
| 62 |
+
self.initial_cls_loss = loss_class.item()
|
| 63 |
+
if self.initial_ner_loss is None and self.training:
|
| 64 |
+
self.initial_ner_loss = loss_ner.item()
|
| 65 |
+
|
| 66 |
+
# Normalize losses
|
| 67 |
+
if (self.initial_cls_loss is not None) and (self.initial_ner_loss is not None):
|
| 68 |
+
norm_cls_loss = loss_class / (self.initial_cls_loss + 1e-8)
|
| 69 |
+
norm_ner_loss = loss_ner / (self.initial_ner_loss + 1e-8)
|
| 70 |
+
else:
|
| 71 |
+
norm_cls_loss = loss_class
|
| 72 |
+
norm_ner_loss = loss_ner
|
| 73 |
+
|
| 74 |
+
# Combine losses with weight
|
| 75 |
+
loss = norm_cls_loss + self.ner_loss_weight * norm_ner_loss
|
| 76 |
+
return (loss, logits_class, logits_ner)
|
| 77 |
+
else:
|
| 78 |
+
return (logits_class, logits_ner)
|
| 79 |
+
TinyGreekNewsBert.register_for_auto_class("AutoModel")
|
training_args.bin
ADDED
|
Binary file (5.3 kB). View file
|
|
|