Upload model
Browse files- MoEConfig.py +5 -2
- MoEModel.py +55 -8
MoEConfig.py
CHANGED
|
@@ -3,8 +3,11 @@ from typing import List
|
|
| 3 |
|
| 4 |
|
| 5 |
class MoEConfig(PretrainedConfig):
|
| 6 |
-
model_type = "moewrapper"
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
def __init__(
|
| 10 |
self,
|
|
|
|
| 3 |
|
| 4 |
|
| 5 |
class MoEConfig(PretrainedConfig):
|
| 6 |
+
model_type = "moewrapper"
|
| 7 |
+
model_list = [
|
| 8 |
+
"kanhatakeyama/01b_model_30b_token",
|
| 9 |
+
"kanhatakeyama/01b_model_30b_token",
|
| 10 |
+
]
|
| 11 |
|
| 12 |
def __init__(
|
| 13 |
self,
|
MoEModel.py
CHANGED
|
@@ -1,33 +1,80 @@
|
|
| 1 |
from transformers import PreTrainedModel
|
| 2 |
-
from MoEConfig import MoEConfig
|
| 3 |
from transformers import AutoModelForCausalLM
|
| 4 |
import torch
|
| 5 |
-
|
| 6 |
-
model_name = "kanhatakeyama/01b_model_30b_token"
|
| 7 |
|
| 8 |
|
| 9 |
class MoeModel(PreTrainedModel):
|
| 10 |
config_class = MoEConfig
|
|
|
|
|
|
|
| 11 |
|
| 12 |
def __init__(self, config):
|
| 13 |
super().__init__(config)
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
self.
|
| 16 |
-
self.set_model()
|
| 17 |
|
| 18 |
-
|
|
|
|
| 19 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 20 |
model_name,
|
| 21 |
device_map="auto",
|
| 22 |
torch_dtype=torch.float16
|
| 23 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
def generate(self, input_ids, attention_mask,
|
| 26 |
**generate_kwargs):
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
ret = self.model.generate(input_ids=input_ids,
|
| 31 |
attention_mask=attention_mask,
|
| 32 |
**generate_kwargs)
|
| 33 |
return ret
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from transformers import PreTrainedModel
|
| 2 |
+
from .MoEConfig import MoEConfig
|
| 3 |
from transformers import AutoModelForCausalLM
|
| 4 |
import torch
|
| 5 |
+
import numpy as np
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
class MoeModel(PreTrainedModel):
|
| 9 |
config_class = MoEConfig
|
| 10 |
+
verbose = True
|
| 11 |
+
fix_mode = False
|
| 12 |
|
| 13 |
def __init__(self, config):
|
| 14 |
super().__init__(config)
|
| 15 |
+
self.model_list = []
|
| 16 |
+
for model_name in self.config_class.model_list:
|
| 17 |
+
self.append_model(model_name)
|
| 18 |
|
| 19 |
+
self.set_model_id(0)
|
|
|
|
| 20 |
|
| 21 |
+
"""
|
| 22 |
+
def set_model(self, model_name):
|
| 23 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 24 |
model_name,
|
| 25 |
device_map="auto",
|
| 26 |
torch_dtype=torch.float16
|
| 27 |
)
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
def append_model(self, model_name):
|
| 31 |
+
print("loading ", model_name)
|
| 32 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 33 |
+
model_name,
|
| 34 |
+
device_map="auto",
|
| 35 |
+
torch_dtype=torch.float16
|
| 36 |
+
)
|
| 37 |
+
self.model_list.append(model)
|
| 38 |
+
|
| 39 |
+
# def set_tokenizer(self, tokenizer):
|
| 40 |
+
# self.tokenizer = tokenizer
|
| 41 |
+
|
| 42 |
+
def set_model_id(self, model_id):
|
| 43 |
+
self.model = self.model_list[model_id]
|
| 44 |
+
|
| 45 |
+
def calc_perplexity(self, tokenized_input):
|
| 46 |
+
ppl_list = []
|
| 47 |
+
for model in self.model_list:
|
| 48 |
+
ppl_list.append(perplexity(model, tokenized_input))
|
| 49 |
+
return np.array(ppl_list)
|
| 50 |
+
|
| 51 |
+
def fix_model(self, model_id):
|
| 52 |
+
self.set_model_id(model_id)
|
| 53 |
+
self.fix_mode = True
|
| 54 |
+
|
| 55 |
+
def set_flexible_mode(self):
|
| 56 |
+
self.fix_mode = False
|
| 57 |
|
| 58 |
def generate(self, input_ids, attention_mask,
|
| 59 |
**generate_kwargs):
|
| 60 |
+
|
| 61 |
+
if not self.fix_mode:
|
| 62 |
+
ppl_array = self.calc_perplexity(input_ids)
|
| 63 |
+
best_model_id = np.where(ppl_array == min(ppl_array))[0][0]
|
| 64 |
+
self.set_model_id(best_model_id)
|
| 65 |
+
|
| 66 |
+
if self.verbose:
|
| 67 |
+
print(f"model {best_model_id} will be used")
|
| 68 |
+
print("ppl array: ", ppl_array)
|
| 69 |
|
| 70 |
ret = self.model.generate(input_ids=input_ids,
|
| 71 |
attention_mask=attention_mask,
|
| 72 |
**generate_kwargs)
|
| 73 |
return ret
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def perplexity(model, tokenized_input) -> torch.Tensor:
|
| 77 |
+
with torch.inference_mode():
|
| 78 |
+
output = model(tokenized_input, labels=tokenized_input)
|
| 79 |
+
ppl = torch.exp(output.loss)
|
| 80 |
+
return ppl.item()
|