Commit
·
57f6c3d
1
Parent(s):
2646361
fix cpu inference
Browse filesSigned-off-by: Meow <[email protected]>
- mha.py +1 -0
- modeling_xlm_roberta.py +1 -3
- rotary.py +22 -11
mha.py
CHANGED
|
@@ -463,6 +463,7 @@ class MHA(nn.Module):
|
|
| 463 |
scale_base=rotary_emb_scale_base,
|
| 464 |
interleaved=rotary_emb_interleaved,
|
| 465 |
device=device,
|
|
|
|
| 466 |
)
|
| 467 |
|
| 468 |
if fused_bias_fc and FusedDense is None:
|
|
|
|
| 463 |
scale_base=rotary_emb_scale_base,
|
| 464 |
interleaved=rotary_emb_interleaved,
|
| 465 |
device=device,
|
| 466 |
+
use_flash_attn=use_flash_attn,
|
| 467 |
)
|
| 468 |
|
| 469 |
if fused_bias_fc and FusedDense is None:
|
modeling_xlm_roberta.py
CHANGED
|
@@ -63,9 +63,7 @@ logger = logging.getLogger(__name__)
|
|
| 63 |
|
| 64 |
|
| 65 |
def get_use_flash_attn(config: XLMRobertaFlashConfig):
|
| 66 |
-
if not getattr(config, "use_flash_attn", False):
|
| 67 |
-
return False
|
| 68 |
-
if not torch.cuda.is_available():
|
| 69 |
return False
|
| 70 |
if importlib.util.find_spec("flash_attn") is None:
|
| 71 |
logger.warning(
|
|
|
|
| 63 |
|
| 64 |
|
| 65 |
def get_use_flash_attn(config: XLMRobertaFlashConfig):
|
| 66 |
+
if not getattr(config, "use_flash_attn", False) or not torch.cuda.is_available():
|
|
|
|
|
|
|
| 67 |
return False
|
| 68 |
if importlib.util.find_spec("flash_attn") is None:
|
| 69 |
logger.warning(
|
rotary.py
CHANGED
|
@@ -4,20 +4,11 @@
|
|
| 4 |
|
| 5 |
# Copyright (c) 2023, Tri Dao.
|
| 6 |
|
| 7 |
-
import math
|
| 8 |
from typing import Optional, Tuple, Union
|
| 9 |
|
| 10 |
import torch
|
| 11 |
from einops import rearrange, repeat
|
| 12 |
|
| 13 |
-
if torch.cuda.is_available():
|
| 14 |
-
try:
|
| 15 |
-
from flash_attn.ops.triton.rotary import apply_rotary
|
| 16 |
-
except ImportError:
|
| 17 |
-
|
| 18 |
-
def apply_rotary(*args, **kwargs):
|
| 19 |
-
raise RuntimeError("RoPE requires flash-attention to be installed")
|
| 20 |
-
|
| 21 |
|
| 22 |
def rotate_half(x, interleaved=False):
|
| 23 |
if not interleaved:
|
|
@@ -69,6 +60,8 @@ class ApplyRotaryEmb(torch.autograd.Function):
|
|
| 69 |
cu_seqlens: Optional[torch.Tensor] = None,
|
| 70 |
max_seqlen: Optional[int] = None,
|
| 71 |
):
|
|
|
|
|
|
|
| 72 |
out = apply_rotary(
|
| 73 |
x,
|
| 74 |
cos,
|
|
@@ -95,6 +88,8 @@ class ApplyRotaryEmb(torch.autograd.Function):
|
|
| 95 |
|
| 96 |
@staticmethod
|
| 97 |
def backward(ctx, do):
|
|
|
|
|
|
|
| 98 |
seqlen_offsets = ctx.seqlen_offsets
|
| 99 |
if seqlen_offsets is None:
|
| 100 |
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
|
|
@@ -169,12 +164,15 @@ class ApplyRotaryEmbQKV_(torch.autograd.Function):
|
|
| 169 |
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
| 170 |
cu_seqlens: Optional[torch.Tensor] = None,
|
| 171 |
max_seqlen: Optional[int] = None,
|
|
|
|
| 172 |
):
|
| 173 |
# batch, seqlen, three, nheads, headdim = qkv.shape
|
| 174 |
assert qkv.shape[-3] == 3
|
| 175 |
if cos_k is None and sin_k is None and qkv.is_contiguous():
|
| 176 |
|
| 177 |
-
if
|
|
|
|
|
|
|
| 178 |
# Call 1 kernel instead of 2 kernels
|
| 179 |
# We need qkv to be contiguous so that when we reshape to combine (3, nheads)
|
| 180 |
# dimensions, we get the same tensor
|
|
@@ -205,6 +203,8 @@ class ApplyRotaryEmbQKV_(torch.autograd.Function):
|
|
| 205 |
)
|
| 206 |
qkv = torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2)
|
| 207 |
else:
|
|
|
|
|
|
|
| 208 |
cos_k = cos if cos_k is None else cos_k
|
| 209 |
sin_k = sin if sin_k is None else sin_k
|
| 210 |
q, k = qkv[..., 0, :, :], qkv[..., 1, :, :]
|
|
@@ -241,6 +241,8 @@ class ApplyRotaryEmbQKV_(torch.autograd.Function):
|
|
| 241 |
|
| 242 |
@staticmethod
|
| 243 |
def backward(ctx, dqkv):
|
|
|
|
|
|
|
| 244 |
seqlen_offsets = ctx.seqlen_offsets
|
| 245 |
if seqlen_offsets is None:
|
| 246 |
cos, sin, cos_k, sin_k, cu_seqlens, seqlen_offsets = ctx.saved_tensors
|
|
@@ -301,6 +303,7 @@ def apply_rotary_emb_qkv_(
|
|
| 301 |
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
| 302 |
cu_seqlens: Optional[torch.Tensor] = None,
|
| 303 |
max_seqlen: Optional[int] = None,
|
|
|
|
| 304 |
):
|
| 305 |
"""
|
| 306 |
Arguments:
|
|
@@ -321,7 +324,7 @@ def apply_rotary_emb_qkv_(
|
|
| 321 |
Apply rotary embedding *inplace* to the first rotary_dim of Q and K.
|
| 322 |
"""
|
| 323 |
return ApplyRotaryEmbQKV_.apply(
|
| 324 |
-
qkv, cos, sin, cos_k, sin_k, interleaved, seqlen_offsets, cu_seqlens, max_seqlen
|
| 325 |
)
|
| 326 |
|
| 327 |
|
|
@@ -337,6 +340,8 @@ class ApplyRotaryEmbKV_(torch.autograd.Function):
|
|
| 337 |
cu_seqlens: Optional[torch.Tensor] = None,
|
| 338 |
max_seqlen: Optional[int] = None,
|
| 339 |
):
|
|
|
|
|
|
|
| 340 |
# batch, seqlen, two, nheads, headdim = kv.shape
|
| 341 |
assert kv.shape[-3] == 2
|
| 342 |
k = kv[..., 0, :, :]
|
|
@@ -364,6 +369,8 @@ class ApplyRotaryEmbKV_(torch.autograd.Function):
|
|
| 364 |
|
| 365 |
@staticmethod
|
| 366 |
def backward(ctx, dkv):
|
|
|
|
|
|
|
| 367 |
seqlen_offsets = ctx.seqlen_offsets
|
| 368 |
if seqlen_offsets is None:
|
| 369 |
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
|
|
@@ -443,6 +450,7 @@ class RotaryEmbedding(torch.nn.Module):
|
|
| 443 |
scale_base=None,
|
| 444 |
pos_idx_in_fp32=True,
|
| 445 |
device=None,
|
|
|
|
| 446 |
):
|
| 447 |
"""
|
| 448 |
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
|
@@ -462,6 +470,7 @@ class RotaryEmbedding(torch.nn.Module):
|
|
| 462 |
self.dim = dim
|
| 463 |
self._base = float(base)
|
| 464 |
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
|
|
|
| 465 |
# Generate and save the inverse frequency buffer (non trainable)
|
| 466 |
inv_freq = self._compute_inv_freq(device)
|
| 467 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
@@ -588,6 +597,7 @@ class RotaryEmbedding(torch.nn.Module):
|
|
| 588 |
seqlen_offsets=seqlen_offset,
|
| 589 |
cu_seqlens=cu_seqlens,
|
| 590 |
max_seqlen=max_seqlen,
|
|
|
|
| 591 |
)
|
| 592 |
else:
|
| 593 |
return apply_rotary_emb_qkv_(
|
|
@@ -600,6 +610,7 @@ class RotaryEmbedding(torch.nn.Module):
|
|
| 600 |
seqlen_offsets=seqlen_offset,
|
| 601 |
cu_seqlens=cu_seqlens,
|
| 602 |
max_seqlen=max_seqlen,
|
|
|
|
| 603 |
)
|
| 604 |
else:
|
| 605 |
q = qkv
|
|
|
|
| 4 |
|
| 5 |
# Copyright (c) 2023, Tri Dao.
|
| 6 |
|
|
|
|
| 7 |
from typing import Optional, Tuple, Union
|
| 8 |
|
| 9 |
import torch
|
| 10 |
from einops import rearrange, repeat
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def rotate_half(x, interleaved=False):
|
| 14 |
if not interleaved:
|
|
|
|
| 60 |
cu_seqlens: Optional[torch.Tensor] = None,
|
| 61 |
max_seqlen: Optional[int] = None,
|
| 62 |
):
|
| 63 |
+
from flash_attn.ops.triton.rotary import apply_rotary
|
| 64 |
+
|
| 65 |
out = apply_rotary(
|
| 66 |
x,
|
| 67 |
cos,
|
|
|
|
| 88 |
|
| 89 |
@staticmethod
|
| 90 |
def backward(ctx, do):
|
| 91 |
+
from flash_attn.ops.triton.rotary import apply_rotary
|
| 92 |
+
|
| 93 |
seqlen_offsets = ctx.seqlen_offsets
|
| 94 |
if seqlen_offsets is None:
|
| 95 |
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
|
|
|
|
| 164 |
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
| 165 |
cu_seqlens: Optional[torch.Tensor] = None,
|
| 166 |
max_seqlen: Optional[int] = None,
|
| 167 |
+
use_flash_attn: bool = True,
|
| 168 |
):
|
| 169 |
# batch, seqlen, three, nheads, headdim = qkv.shape
|
| 170 |
assert qkv.shape[-3] == 3
|
| 171 |
if cos_k is None and sin_k is None and qkv.is_contiguous():
|
| 172 |
|
| 173 |
+
if use_flash_attn:
|
| 174 |
+
from flash_attn.ops.triton.rotary import apply_rotary
|
| 175 |
+
|
| 176 |
# Call 1 kernel instead of 2 kernels
|
| 177 |
# We need qkv to be contiguous so that when we reshape to combine (3, nheads)
|
| 178 |
# dimensions, we get the same tensor
|
|
|
|
| 203 |
)
|
| 204 |
qkv = torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2)
|
| 205 |
else:
|
| 206 |
+
from flash_attn.ops.triton.rotary import apply_rotary
|
| 207 |
+
|
| 208 |
cos_k = cos if cos_k is None else cos_k
|
| 209 |
sin_k = sin if sin_k is None else sin_k
|
| 210 |
q, k = qkv[..., 0, :, :], qkv[..., 1, :, :]
|
|
|
|
| 241 |
|
| 242 |
@staticmethod
|
| 243 |
def backward(ctx, dqkv):
|
| 244 |
+
from flash_attn.ops.triton.rotary import apply_rotary
|
| 245 |
+
|
| 246 |
seqlen_offsets = ctx.seqlen_offsets
|
| 247 |
if seqlen_offsets is None:
|
| 248 |
cos, sin, cos_k, sin_k, cu_seqlens, seqlen_offsets = ctx.saved_tensors
|
|
|
|
| 303 |
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
| 304 |
cu_seqlens: Optional[torch.Tensor] = None,
|
| 305 |
max_seqlen: Optional[int] = None,
|
| 306 |
+
use_flash_attn=True,
|
| 307 |
):
|
| 308 |
"""
|
| 309 |
Arguments:
|
|
|
|
| 324 |
Apply rotary embedding *inplace* to the first rotary_dim of Q and K.
|
| 325 |
"""
|
| 326 |
return ApplyRotaryEmbQKV_.apply(
|
| 327 |
+
qkv, cos, sin, cos_k, sin_k, interleaved, seqlen_offsets, cu_seqlens, max_seqlen, use_flash_attn,
|
| 328 |
)
|
| 329 |
|
| 330 |
|
|
|
|
| 340 |
cu_seqlens: Optional[torch.Tensor] = None,
|
| 341 |
max_seqlen: Optional[int] = None,
|
| 342 |
):
|
| 343 |
+
from flash_attn.ops.triton.rotary import apply_rotary
|
| 344 |
+
|
| 345 |
# batch, seqlen, two, nheads, headdim = kv.shape
|
| 346 |
assert kv.shape[-3] == 2
|
| 347 |
k = kv[..., 0, :, :]
|
|
|
|
| 369 |
|
| 370 |
@staticmethod
|
| 371 |
def backward(ctx, dkv):
|
| 372 |
+
from flash_attn.ops.triton.rotary import apply_rotary
|
| 373 |
+
|
| 374 |
seqlen_offsets = ctx.seqlen_offsets
|
| 375 |
if seqlen_offsets is None:
|
| 376 |
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
|
|
|
|
| 450 |
scale_base=None,
|
| 451 |
pos_idx_in_fp32=True,
|
| 452 |
device=None,
|
| 453 |
+
use_flash_attn=True,
|
| 454 |
):
|
| 455 |
"""
|
| 456 |
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
|
|
|
| 470 |
self.dim = dim
|
| 471 |
self._base = float(base)
|
| 472 |
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
| 473 |
+
self.use_flash_attn = use_flash_attn
|
| 474 |
# Generate and save the inverse frequency buffer (non trainable)
|
| 475 |
inv_freq = self._compute_inv_freq(device)
|
| 476 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
|
|
| 597 |
seqlen_offsets=seqlen_offset,
|
| 598 |
cu_seqlens=cu_seqlens,
|
| 599 |
max_seqlen=max_seqlen,
|
| 600 |
+
use_flash_attn=self.use_flash_attn,
|
| 601 |
)
|
| 602 |
else:
|
| 603 |
return apply_rotary_emb_qkv_(
|
|
|
|
| 610 |
seqlen_offsets=seqlen_offset,
|
| 611 |
cu_seqlens=cu_seqlens,
|
| 612 |
max_seqlen=max_seqlen,
|
| 613 |
+
use_flash_attn=self.use_flash_attn,
|
| 614 |
)
|
| 615 |
else:
|
| 616 |
q = qkv
|