output-hidden-states (#56)
Browse files- add option to output hidden states (681845da60fc92b982a091b193ae1fac09bc61f8)
- modeling_xlm_roberta.py +43 -10
modeling_xlm_roberta.py
CHANGED
|
@@ -22,13 +22,13 @@ import torch.nn.functional as F
|
|
| 22 |
import torch.utils.checkpoint
|
| 23 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 24 |
from transformers import AutoTokenizer, PretrainedConfig
|
| 25 |
-
from transformers.modeling_outputs import
|
| 26 |
-
SequenceClassifierOutput)
|
| 27 |
from transformers.modeling_utils import PreTrainedModel
|
| 28 |
from transformers.models.bert.modeling_bert import (
|
| 29 |
-
BaseModelOutputWithPoolingAndCrossAttentions,
|
| 30 |
-
|
| 31 |
-
|
|
|
|
| 32 |
|
| 33 |
from .rotary import RotaryEmbedding
|
| 34 |
from .block import Block
|
|
@@ -195,17 +195,30 @@ class XLMRobertaEncoder(nn.Module):
|
|
| 195 |
self._grad_checkpointing = value
|
| 196 |
|
| 197 |
def forward(
|
| 198 |
-
self,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
):
|
| 200 |
"""If subset_mask is not None, we only want output for the subset of the sequence.
|
| 201 |
This means that we only compute the last layer output for these tokens.
|
| 202 |
subset_mask: (batch, seqlen), dtype=torch.bool
|
| 203 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
if key_padding_mask is None or not self.use_flash_attn:
|
| 205 |
mixer_kwargs = {"adapter_mask": adapter_mask}
|
| 206 |
if key_padding_mask is not None:
|
| 207 |
mixer_kwargs["key_padding_mask"] = key_padding_mask.bool()
|
| 208 |
for layer in self.layers:
|
|
|
|
|
|
|
| 209 |
if self._grad_checkpointing:
|
| 210 |
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 211 |
layer,
|
|
@@ -215,10 +228,14 @@ class XLMRobertaEncoder(nn.Module):
|
|
| 215 |
)
|
| 216 |
else:
|
| 217 |
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
|
|
|
|
|
|
|
| 218 |
if subset_mask is not None:
|
| 219 |
hidden_states = hidden_states[subset_mask]
|
| 220 |
else:
|
| 221 |
batch, seqlen = hidden_states.shape[:2]
|
|
|
|
|
|
|
| 222 |
hidden_states, indices, cu_seqlens, max_seqlen_in_batch, cu_adapter_mask = (
|
| 223 |
unpad_input(hidden_states, key_padding_mask, adapter_mask)
|
| 224 |
)
|
|
@@ -239,6 +256,10 @@ class XLMRobertaEncoder(nn.Module):
|
|
| 239 |
)
|
| 240 |
else:
|
| 241 |
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
hidden_states = pad_input(hidden_states, indices, batch, seqlen)
|
| 243 |
else:
|
| 244 |
for layer in self.layers[:-1]:
|
|
@@ -291,7 +312,7 @@ class XLMRobertaEncoder(nn.Module):
|
|
| 291 |
hidden_states = self.layers[-1](
|
| 292 |
hidden_states_subset, mixer_kwargs=mixer_kwargs
|
| 293 |
)
|
| 294 |
-
return hidden_states
|
| 295 |
|
| 296 |
|
| 297 |
class XLMRobertaPooler(nn.Module):
|
|
@@ -588,7 +609,7 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
| 588 |
embeddings = self.mean_pooling(
|
| 589 |
token_embs, encoded_input["attention_mask"]
|
| 590 |
)
|
| 591 |
-
|
| 592 |
all_embeddings.extend(embeddings)
|
| 593 |
|
| 594 |
all_embeddings = [all_embeddings[idx] for idx in inverse_permutation]
|
|
@@ -596,9 +617,12 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
| 596 |
truncate_dim = truncate_dim or self.config.truncate_dim
|
| 597 |
if truncate_dim:
|
| 598 |
all_embeddings = self.truncate_embeddings(all_embeddings, truncate_dim)
|
| 599 |
-
|
| 600 |
if normalize_embeddings:
|
| 601 |
-
all_embeddings = [
|
|
|
|
|
|
|
|
|
|
| 602 |
|
| 603 |
if convert_to_tensor:
|
| 604 |
all_embeddings = torch.stack(all_embeddings)
|
|
@@ -659,6 +683,7 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
| 659 |
attention_mask=None,
|
| 660 |
masked_tokens_mask=None,
|
| 661 |
return_dict=None,
|
|
|
|
| 662 |
**kwargs,
|
| 663 |
):
|
| 664 |
"""If masked_tokens_mask is not None (i.e. last_layer_subset == True in XLMForPreTraining),
|
|
@@ -711,8 +736,15 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
| 711 |
key_padding_mask=attention_mask,
|
| 712 |
subset_mask=subset_mask,
|
| 713 |
adapter_mask=adapter_mask,
|
|
|
|
| 714 |
)
|
| 715 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 716 |
if masked_tokens_mask is None:
|
| 717 |
pooled_output = (
|
| 718 |
self.pooler(sequence_output, adapter_mask=adapter_mask)
|
|
@@ -742,6 +774,7 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
| 742 |
return BaseModelOutputWithPoolingAndCrossAttentions(
|
| 743 |
last_hidden_state=sequence_output,
|
| 744 |
pooler_output=pooled_output,
|
|
|
|
| 745 |
)
|
| 746 |
|
| 747 |
|
|
|
|
| 22 |
import torch.utils.checkpoint
|
| 23 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 24 |
from transformers import AutoTokenizer, PretrainedConfig
|
| 25 |
+
from transformers.modeling_outputs import MaskedLMOutput, SequenceClassifierOutput
|
|
|
|
| 26 |
from transformers.modeling_utils import PreTrainedModel
|
| 27 |
from transformers.models.bert.modeling_bert import (
|
| 28 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
| 29 |
+
BertForPreTrainingOutput,
|
| 30 |
+
)
|
| 31 |
+
from transformers.models.xlm_roberta.modeling_xlm_roberta import XLMRobertaLMHead
|
| 32 |
|
| 33 |
from .rotary import RotaryEmbedding
|
| 34 |
from .block import Block
|
|
|
|
| 195 |
self._grad_checkpointing = value
|
| 196 |
|
| 197 |
def forward(
|
| 198 |
+
self,
|
| 199 |
+
hidden_states,
|
| 200 |
+
key_padding_mask=None,
|
| 201 |
+
subset_mask=None,
|
| 202 |
+
adapter_mask=None,
|
| 203 |
+
output_hidden_states: Optional[bool] = None,
|
| 204 |
):
|
| 205 |
"""If subset_mask is not None, we only want output for the subset of the sequence.
|
| 206 |
This means that we only compute the last layer output for these tokens.
|
| 207 |
subset_mask: (batch, seqlen), dtype=torch.bool
|
| 208 |
"""
|
| 209 |
+
|
| 210 |
+
all_hidden_states = () if output_hidden_states else None
|
| 211 |
+
|
| 212 |
+
if output_hidden_states and subset_mask:
|
| 213 |
+
raise ValueError('output_hidden_states is not supported for subset_masks')
|
| 214 |
+
|
| 215 |
if key_padding_mask is None or not self.use_flash_attn:
|
| 216 |
mixer_kwargs = {"adapter_mask": adapter_mask}
|
| 217 |
if key_padding_mask is not None:
|
| 218 |
mixer_kwargs["key_padding_mask"] = key_padding_mask.bool()
|
| 219 |
for layer in self.layers:
|
| 220 |
+
if output_hidden_states:
|
| 221 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 222 |
if self._grad_checkpointing:
|
| 223 |
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 224 |
layer,
|
|
|
|
| 228 |
)
|
| 229 |
else:
|
| 230 |
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
|
| 231 |
+
if output_hidden_states:
|
| 232 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 233 |
if subset_mask is not None:
|
| 234 |
hidden_states = hidden_states[subset_mask]
|
| 235 |
else:
|
| 236 |
batch, seqlen = hidden_states.shape[:2]
|
| 237 |
+
if output_hidden_states:
|
| 238 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 239 |
hidden_states, indices, cu_seqlens, max_seqlen_in_batch, cu_adapter_mask = (
|
| 240 |
unpad_input(hidden_states, key_padding_mask, adapter_mask)
|
| 241 |
)
|
|
|
|
| 256 |
)
|
| 257 |
else:
|
| 258 |
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
|
| 259 |
+
if output_hidden_states:
|
| 260 |
+
all_hidden_states = all_hidden_states + (
|
| 261 |
+
pad_input(hidden_states, indices, batch, seqlen),
|
| 262 |
+
)
|
| 263 |
hidden_states = pad_input(hidden_states, indices, batch, seqlen)
|
| 264 |
else:
|
| 265 |
for layer in self.layers[:-1]:
|
|
|
|
| 312 |
hidden_states = self.layers[-1](
|
| 313 |
hidden_states_subset, mixer_kwargs=mixer_kwargs
|
| 314 |
)
|
| 315 |
+
return all_hidden_states if output_hidden_states else hidden_states
|
| 316 |
|
| 317 |
|
| 318 |
class XLMRobertaPooler(nn.Module):
|
|
|
|
| 609 |
embeddings = self.mean_pooling(
|
| 610 |
token_embs, encoded_input["attention_mask"]
|
| 611 |
)
|
| 612 |
+
|
| 613 |
all_embeddings.extend(embeddings)
|
| 614 |
|
| 615 |
all_embeddings = [all_embeddings[idx] for idx in inverse_permutation]
|
|
|
|
| 617 |
truncate_dim = truncate_dim or self.config.truncate_dim
|
| 618 |
if truncate_dim:
|
| 619 |
all_embeddings = self.truncate_embeddings(all_embeddings, truncate_dim)
|
| 620 |
+
|
| 621 |
if normalize_embeddings:
|
| 622 |
+
all_embeddings = [
|
| 623 |
+
torch.nn.functional.normalize(embedding, p=2, dim=0)
|
| 624 |
+
for embedding in all_embeddings
|
| 625 |
+
]
|
| 626 |
|
| 627 |
if convert_to_tensor:
|
| 628 |
all_embeddings = torch.stack(all_embeddings)
|
|
|
|
| 683 |
attention_mask=None,
|
| 684 |
masked_tokens_mask=None,
|
| 685 |
return_dict=None,
|
| 686 |
+
output_hidden_states=None,
|
| 687 |
**kwargs,
|
| 688 |
):
|
| 689 |
"""If masked_tokens_mask is not None (i.e. last_layer_subset == True in XLMForPreTraining),
|
|
|
|
| 736 |
key_padding_mask=attention_mask,
|
| 737 |
subset_mask=subset_mask,
|
| 738 |
adapter_mask=adapter_mask,
|
| 739 |
+
output_hidden_states=output_hidden_states,
|
| 740 |
)
|
| 741 |
|
| 742 |
+
if output_hidden_states:
|
| 743 |
+
all_hidden_states = sequence_output
|
| 744 |
+
sequence_output = sequence_output[-1]
|
| 745 |
+
else:
|
| 746 |
+
all_hidden_states = None
|
| 747 |
+
|
| 748 |
if masked_tokens_mask is None:
|
| 749 |
pooled_output = (
|
| 750 |
self.pooler(sequence_output, adapter_mask=adapter_mask)
|
|
|
|
| 774 |
return BaseModelOutputWithPoolingAndCrossAttentions(
|
| 775 |
last_hidden_state=sequence_output,
|
| 776 |
pooler_output=pooled_output,
|
| 777 |
+
hidden_states=all_hidden_states,
|
| 778 |
)
|
| 779 |
|
| 780 |
|