Upload folder using huggingface_hub
Browse files- config.json +36 -0
- configuration_hyena.py +88 -0
- model.safetensors +3 -0
- modeling_hyena.py +574 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +51 -0
- tokenization_hyena.py +117 -0
- tokenizer_config.json +71 -0
config.json
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "jiaxie/Hyena-SARS-CoV2",
|
| 3 |
+
"activation_freq": 10,
|
| 4 |
+
"architectures": [
|
| 5 |
+
"HyenaDNAForCausalLM"
|
| 6 |
+
],
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "jiaxie/Hyena-SARS-CoV2--configuration_hyena.HyenaConfig",
|
| 9 |
+
"AutoModel": "jiaxie/Hyena-SARS-CoV2--modeling_hyena.HyenaDNAModel",
|
| 10 |
+
"AutoModelForCausalLM": "jiaxie/Hyena-SARS-CoV2--modeling_hyena.HyenaDNAForCausalLM",
|
| 11 |
+
"AutoModelForSequenceClassification": "jiaxie/Hyena-SARS-CoV2--modeling_hyena.HyenaDNAForSequenceClassification"
|
| 12 |
+
},
|
| 13 |
+
"d_inner": 1024,
|
| 14 |
+
"d_model": 256,
|
| 15 |
+
"emb_dim": 5,
|
| 16 |
+
"embed_dropout": 0.1,
|
| 17 |
+
"filter_order": 64,
|
| 18 |
+
"hyena_dropout": 0.0,
|
| 19 |
+
"hyena_filter_dropout": 0.0,
|
| 20 |
+
"hyena_order": 2,
|
| 21 |
+
"initializer_range": 0.02,
|
| 22 |
+
"layer_norm_epsilon": 1e-05,
|
| 23 |
+
"max_seq_len": 160002,
|
| 24 |
+
"model_type": "hyenadna",
|
| 25 |
+
"n_layer": 8,
|
| 26 |
+
"num_inner_mlps": 2,
|
| 27 |
+
"pad_token_id": 4,
|
| 28 |
+
"pad_vocab_size_multiple": 8,
|
| 29 |
+
"short_filter_order": 3,
|
| 30 |
+
"tie_word_embeddings": false,
|
| 31 |
+
"torch_dtype": "bfloat16",
|
| 32 |
+
"train_freq": true,
|
| 33 |
+
"transformers_version": "4.47.1",
|
| 34 |
+
"use_bias": true,
|
| 35 |
+
"vocab_size": 12
|
| 36 |
+
}
|
configuration_hyena.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig
|
| 2 |
+
import json
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class HyenaConfig(PretrainedConfig):
|
| 6 |
+
model_type = "hyenadna"
|
| 7 |
+
def __init__(
|
| 8 |
+
self,
|
| 9 |
+
vocab_size=12,
|
| 10 |
+
d_model=256,
|
| 11 |
+
d_inner=None,
|
| 12 |
+
use_bias=True,
|
| 13 |
+
train_freq=True,
|
| 14 |
+
max_seq_len=1024,
|
| 15 |
+
emb_dim=3,
|
| 16 |
+
n_layer=12,
|
| 17 |
+
num_inner_mlps=2,
|
| 18 |
+
hyena_order=2,
|
| 19 |
+
short_filter_order=3,
|
| 20 |
+
filter_order=64,
|
| 21 |
+
activation_freq=1,
|
| 22 |
+
embed_dropout=0.1,
|
| 23 |
+
hyena_dropout=0.0,
|
| 24 |
+
hyena_filter_dropout=0.0,
|
| 25 |
+
layer_norm_epsilon=1e-5,
|
| 26 |
+
initializer_range=0.02,
|
| 27 |
+
pad_vocab_size_multiple=8,
|
| 28 |
+
**kwargs,
|
| 29 |
+
):
|
| 30 |
+
self.vocab_size = vocab_size
|
| 31 |
+
self.d_model = d_model
|
| 32 |
+
if d_inner is None:
|
| 33 |
+
self.d_inner = 4 * d_model
|
| 34 |
+
else:
|
| 35 |
+
self.d_inner = d_inner
|
| 36 |
+
self.use_bias = use_bias
|
| 37 |
+
self.train_freq = train_freq
|
| 38 |
+
self.max_seq_len = max_seq_len
|
| 39 |
+
self.emb_dim = emb_dim
|
| 40 |
+
self.n_layer = n_layer
|
| 41 |
+
self.hyena_order = hyena_order
|
| 42 |
+
self.filter_order = filter_order
|
| 43 |
+
self.short_filter_order = short_filter_order
|
| 44 |
+
self.activation_freq = activation_freq
|
| 45 |
+
self.num_inner_mlps = num_inner_mlps
|
| 46 |
+
self.embed_dropout = embed_dropout
|
| 47 |
+
self.hyena_dropout = hyena_dropout
|
| 48 |
+
self.hyena_filter_dropout = hyena_filter_dropout
|
| 49 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
| 50 |
+
self.initializer_range = initializer_range
|
| 51 |
+
self.pad_vocab_size_multiple = pad_vocab_size_multiple
|
| 52 |
+
super().__init__(**kwargs)
|
| 53 |
+
|
| 54 |
+
@classmethod
|
| 55 |
+
def from_original_config(cls, config_path, **kwargs):
|
| 56 |
+
with open(config_path, "r") as f:
|
| 57 |
+
config = json.load(f)
|
| 58 |
+
|
| 59 |
+
vocab_size = config["vocab_size"]
|
| 60 |
+
d_model = config["d_model"]
|
| 61 |
+
d_inner = config["d_inner"]
|
| 62 |
+
max_seq_len = config["layer"]["l_max"]
|
| 63 |
+
emb_dim = config["layer"]["emb_dim"]
|
| 64 |
+
filter_order = config["layer"]["filter_order"]
|
| 65 |
+
if "local_order" in config["layer"]:
|
| 66 |
+
short_filter_order = config["layer"]["local_order"]
|
| 67 |
+
elif "short_filter_order" in config["layer"]:
|
| 68 |
+
short_filter_order = config["layer"]["short_filter_order"]
|
| 69 |
+
else:
|
| 70 |
+
short_filter_order = 3
|
| 71 |
+
n_layer = config["n_layer"]
|
| 72 |
+
activation_freq = config["layer"]["w"]
|
| 73 |
+
embed_dropout = config["embed_dropout"]
|
| 74 |
+
pad_vocab_size_multiple = config["pad_vocab_size_multiple"]
|
| 75 |
+
return cls(vocab_size=vocab_size,
|
| 76 |
+
d_model=d_model,
|
| 77 |
+
d_inner=d_inner,
|
| 78 |
+
max_seq_len=max_seq_len,
|
| 79 |
+
emb_dim=emb_dim,
|
| 80 |
+
filter_order=filter_order,
|
| 81 |
+
short_filter_order=short_filter_order,
|
| 82 |
+
n_layer=n_layer,
|
| 83 |
+
activation_freq=activation_freq,
|
| 84 |
+
embed_dropout=embed_dropout,
|
| 85 |
+
pad_vocab_size_multiple=pad_vocab_size_multiple,
|
| 86 |
+
tie_word_embeddings=False,
|
| 87 |
+
**kwargs
|
| 88 |
+
)
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4d1aff162dd34219bcbd8c13f2e939ec01dec15326a9544123b4e4b9f9dc9ba8
|
| 3 |
+
size 28500648
|
modeling_hyena.py
ADDED
|
@@ -0,0 +1,574 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""HyenaDNA custom code port to Hugging Face Hub"""
|
| 3 |
+
|
| 4 |
+
import math
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from torch.nn import functional as F
|
| 8 |
+
from .configuration_hyena import HyenaConfig
|
| 9 |
+
from transformers import PreTrainedModel
|
| 10 |
+
from typing import Optional, Tuple, Union
|
| 11 |
+
from transformers.modeling_outputs import CausalLMOutput, SequenceClassifierOutput, BaseModelOutputWithNoAttention
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def fftconv(u, k, D):
|
| 15 |
+
"""
|
| 16 |
+
We apply a convolution through the fourier domain (from the Convolution Theorem)
|
| 17 |
+
|
| 18 |
+
"""
|
| 19 |
+
seqlen = u.shape[-1]
|
| 20 |
+
fft_size = 2 * seqlen
|
| 21 |
+
|
| 22 |
+
k_f = torch.fft.rfft(k.to(torch.float32), n=fft_size) / fft_size
|
| 23 |
+
u_f = torch.fft.rfft(u.to(dtype=torch.float32), n=fft_size)
|
| 24 |
+
|
| 25 |
+
if len(u.shape) > 3: k_f = k_f.unsqueeze(1)
|
| 26 |
+
y = torch.fft.irfft(u_f * k_f, n=fft_size, norm='forward')[..., :seqlen]
|
| 27 |
+
|
| 28 |
+
out = y + u * D.unsqueeze(-1)
|
| 29 |
+
return out.to(dtype=u.dtype)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@torch.jit.script
|
| 33 |
+
def mul_sum(q, y):
|
| 34 |
+
return (q * y).sum(dim=1)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class HyenaSin(nn.Module):
|
| 38 |
+
"""The Sin activation function for the Hyena Filter function."""
|
| 39 |
+
def __init__(self, config):
|
| 40 |
+
super().__init__()
|
| 41 |
+
self.freq = nn.Parameter(config.activation_freq * torch.ones(1, config.filter_order)) if config.train_freq else config.activation_freq * torch.ones(1, config.filter_order)
|
| 42 |
+
|
| 43 |
+
def forward(self, x):
|
| 44 |
+
return torch.sin(self.freq * x)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class HyenaPositionalEmbedding(nn.Module):
|
| 48 |
+
def __init__(self, config):
|
| 49 |
+
"""Complex exponential positional embeddings for Hyena filters."""
|
| 50 |
+
super().__init__()
|
| 51 |
+
|
| 52 |
+
self.seq_len = config.max_seq_len
|
| 53 |
+
# The time embedding fed to the filteres is normalized so that t_f = 1
|
| 54 |
+
t = torch.linspace(0, 1, self.seq_len)[None, :, None] # 1, L, 1
|
| 55 |
+
|
| 56 |
+
if config.emb_dim > 1:
|
| 57 |
+
bands = (config.emb_dim - 1) // 2
|
| 58 |
+
# To compute the right embeddings we use the "proper" linspace
|
| 59 |
+
t_rescaled = torch.linspace(0, self.seq_len - 1, self.seq_len)[None, :, None]
|
| 60 |
+
w = 2 * math.pi * t_rescaled / self.seq_len # 1, L, 1
|
| 61 |
+
|
| 62 |
+
f = torch.linspace(1e-4, bands - 1, bands)[None, None]
|
| 63 |
+
|
| 64 |
+
z = torch.cat([t, torch.cos(-f * w), torch.sin(-f * w)], dim=-1)
|
| 65 |
+
|
| 66 |
+
self.register_buffer("z", z)
|
| 67 |
+
self.register_buffer("t", t)
|
| 68 |
+
|
| 69 |
+
def forward(self, L):
|
| 70 |
+
return self.z[:, :L], self.t[:, :L]
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
class HyenaExponentialModulation(nn.Module):
|
| 74 |
+
"""The window function applied to the output of the (MLP) filter function."""
|
| 75 |
+
def __init__(
|
| 76 |
+
self,
|
| 77 |
+
d_model,
|
| 78 |
+
fast_decay_pct=0.3,
|
| 79 |
+
slow_decay_pct=1.5,
|
| 80 |
+
target=1e-2,
|
| 81 |
+
modulate: bool=True,
|
| 82 |
+
shift: float = 0.05,
|
| 83 |
+
**kwargs
|
| 84 |
+
):
|
| 85 |
+
super().__init__()
|
| 86 |
+
self.modulate = modulate
|
| 87 |
+
self.shift = shift
|
| 88 |
+
max_decay = math.log(target) / fast_decay_pct
|
| 89 |
+
min_decay = math.log(target) / slow_decay_pct
|
| 90 |
+
deltas = torch.linspace(min_decay, max_decay, d_model)[None, None]
|
| 91 |
+
self.register_buffer("deltas", deltas)
|
| 92 |
+
|
| 93 |
+
def forward(self, t, x):
|
| 94 |
+
if self.modulate:
|
| 95 |
+
decay = torch.exp(-t * self.deltas.abs())
|
| 96 |
+
x = x * (decay + self.shift)
|
| 97 |
+
return x
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
class HyenaFilter(nn.Module):
|
| 101 |
+
def __init__(
|
| 102 |
+
self,
|
| 103 |
+
config,
|
| 104 |
+
**kwargs
|
| 105 |
+
):
|
| 106 |
+
"""
|
| 107 |
+
Implicit long filter with modulation.
|
| 108 |
+
|
| 109 |
+
Args:
|
| 110 |
+
d_model: number of channels in the input
|
| 111 |
+
emb_dim: dimension of the positional encoding (`emb_dim` - 1) // 2 is the number of bands
|
| 112 |
+
order: width of the FFN
|
| 113 |
+
num_inner_mlps: number of inner linear layers inside filter MLP
|
| 114 |
+
|
| 115 |
+
Note:
|
| 116 |
+
filter_dropout is not implemented
|
| 117 |
+
"""
|
| 118 |
+
super().__init__()
|
| 119 |
+
|
| 120 |
+
self.d_model = config.d_model * (config.hyena_order - 1)
|
| 121 |
+
self.use_bias = config.use_bias
|
| 122 |
+
self.bias = nn.Parameter(torch.randn(self.d_model))
|
| 123 |
+
self.dropout = nn.Dropout(config.hyena_filter_dropout)
|
| 124 |
+
|
| 125 |
+
act = HyenaSin(config)
|
| 126 |
+
self.emb_dim = config.emb_dim
|
| 127 |
+
assert self.emb_dim % 2 != 0 and self.emb_dim >= 3, "emb_dim must be odd and greater or equal to 3 (time, sine and cosine)"
|
| 128 |
+
self.seq_len = config.max_seq_len
|
| 129 |
+
|
| 130 |
+
self.pos_emb = HyenaPositionalEmbedding(config)
|
| 131 |
+
|
| 132 |
+
self.implicit_filter = nn.Sequential(
|
| 133 |
+
nn.Linear(self.emb_dim, config.filter_order),
|
| 134 |
+
act,
|
| 135 |
+
)
|
| 136 |
+
for i in range(config.num_inner_mlps):
|
| 137 |
+
self.implicit_filter.append(nn.Linear(config.filter_order, config.filter_order))
|
| 138 |
+
self.implicit_filter.append(act)
|
| 139 |
+
|
| 140 |
+
self.implicit_filter.append(nn.Linear(config.filter_order, config.d_model, bias=False))
|
| 141 |
+
|
| 142 |
+
self.modulation = HyenaExponentialModulation(config.d_model)
|
| 143 |
+
|
| 144 |
+
self.normalized = False
|
| 145 |
+
|
| 146 |
+
def filter(self, L, *args, **kwargs):
|
| 147 |
+
z, t = self.pos_emb(L)
|
| 148 |
+
h = self.implicit_filter(z.to(dtype=self.implicit_filter[0].weight.dtype))
|
| 149 |
+
h = self.modulation(t, h)
|
| 150 |
+
return h
|
| 151 |
+
|
| 152 |
+
def forward(self, x, L, k=None, bias=None, *args, **kwargs):
|
| 153 |
+
if k is None: k = self.filter(L)
|
| 154 |
+
|
| 155 |
+
# Ensure compatibility with filters that return a tuple
|
| 156 |
+
k = k[0] if type(k) is tuple else k
|
| 157 |
+
|
| 158 |
+
y = fftconv(x, k, bias)
|
| 159 |
+
return y
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
class HyenaOperator(nn.Module):
|
| 163 |
+
def __init__(
|
| 164 |
+
self,
|
| 165 |
+
config,
|
| 166 |
+
**filter_args,
|
| 167 |
+
):
|
| 168 |
+
r"""
|
| 169 |
+
Hyena operator described in the paper https://arxiv.org/pdf/2302.10866.pdf
|
| 170 |
+
|
| 171 |
+
Args:
|
| 172 |
+
d_model (int): Dimension of the input and output embeddings (width of the layer)
|
| 173 |
+
l_max: (int): Maximum input sequence length. Defaults to None
|
| 174 |
+
order: (int): Depth of the Hyena recurrence. Defaults to 2
|
| 175 |
+
dropout: (float): Dropout probability. Defaults to 0.0
|
| 176 |
+
filter_dropout: (float): Dropout probability for the filter. Defaults to 0.0
|
| 177 |
+
"""
|
| 178 |
+
super().__init__()
|
| 179 |
+
|
| 180 |
+
self.d_model = config.d_model
|
| 181 |
+
self.l_max = config.max_seq_len
|
| 182 |
+
self.order = config.hyena_order
|
| 183 |
+
inner_width = config.d_model * (self.order + 1)
|
| 184 |
+
self.dropout = nn.Dropout(config.hyena_dropout)
|
| 185 |
+
self.in_proj = nn.Linear(self.d_model, inner_width)
|
| 186 |
+
self.out_proj = nn.Linear(self.d_model, self.d_model)
|
| 187 |
+
|
| 188 |
+
self.short_filter = nn.Conv1d(
|
| 189 |
+
inner_width,
|
| 190 |
+
inner_width,
|
| 191 |
+
config.short_filter_order,
|
| 192 |
+
padding=2,
|
| 193 |
+
groups=inner_width
|
| 194 |
+
)
|
| 195 |
+
self.filter_fn = HyenaFilter(config)
|
| 196 |
+
|
| 197 |
+
def forward(self, u):
|
| 198 |
+
l = u.size(-2)
|
| 199 |
+
l_filter = min(l, self.l_max)
|
| 200 |
+
u = self.in_proj(u).transpose(1, 2)
|
| 201 |
+
|
| 202 |
+
uc = self.short_filter(u)[...,:l_filter]
|
| 203 |
+
*x, v = uc.split(self.d_model, dim=1)
|
| 204 |
+
|
| 205 |
+
k = self.filter_fn.filter(l_filter)[0]
|
| 206 |
+
k = k.transpose(0, 1).reshape(self.order - 1, self.d_model, l_filter)
|
| 207 |
+
bias = self.filter_fn.bias.reshape(self.order - 1, self.d_model)
|
| 208 |
+
|
| 209 |
+
for o, x_i in enumerate(reversed(x[1:])):
|
| 210 |
+
v = self.dropout(v * x_i)
|
| 211 |
+
v = self.filter_fn(v, l_filter, k=k[o], bias=bias[o])
|
| 212 |
+
|
| 213 |
+
y = (v * x[0]).transpose(1, 2)
|
| 214 |
+
|
| 215 |
+
y = self.out_proj(y)
|
| 216 |
+
return y
|
| 217 |
+
|
| 218 |
+
class HyenaMlp(nn.Module):
|
| 219 |
+
|
| 220 |
+
def __init__(self, config):
|
| 221 |
+
"""
|
| 222 |
+
From https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/modules/mlp.py
|
| 223 |
+
"""
|
| 224 |
+
super().__init__()
|
| 225 |
+
in_features = config.d_model
|
| 226 |
+
hidden_features = config.d_inner
|
| 227 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 228 |
+
self.fc2 = nn.Linear(hidden_features, config.d_model)
|
| 229 |
+
|
| 230 |
+
def forward(self, x):
|
| 231 |
+
y = self.fc1(x)
|
| 232 |
+
y = F.gelu(y, approximate="tanh")
|
| 233 |
+
y = self.fc2(y)
|
| 234 |
+
return y
|
| 235 |
+
|
| 236 |
+
class HyenaBlock(nn.Module):
|
| 237 |
+
|
| 238 |
+
def __init__(self, config):
|
| 239 |
+
"""
|
| 240 |
+
From https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/modules/block.py
|
| 241 |
+
For prenorm=True, this Block has a slightly different structure compared to a regular
|
| 242 |
+
prenorm Transformer block.
|
| 243 |
+
The standard block is: LN -> MHA -> Dropout -> Add -> LN -> MLP -> Dropout -> Add.
|
| 244 |
+
[Ref: https://arxiv.org/abs/2002.04745]
|
| 245 |
+
Here we have: Dropout -> Add -> LN -> MHA -> Dropout -> Add -> LN -> MLP, returning both
|
| 246 |
+
the hidden_states (output of the MLP) and the residual.
|
| 247 |
+
This is for performance reasons, as we can fuse the dropout, add and LayerNorm.
|
| 248 |
+
The residual needs to be provided (except for the very first block).
|
| 249 |
+
For prenorm=False, this Block has the same structure as a regular postnorm Transformer
|
| 250 |
+
block: MHA -> Dropout -> Add -> LN -> MLP -> Dropout -> Add -> LN.
|
| 251 |
+
return_residual: whether each of the sub-layers (mixer and mlp) will return the residual.
|
| 252 |
+
This is for performance reason: for post-norm architecture, returning the input allows us
|
| 253 |
+
to fuse the backward of nn.Linear with the residual connection.
|
| 254 |
+
"""
|
| 255 |
+
super().__init__()
|
| 256 |
+
self.mixer = HyenaOperator(config)
|
| 257 |
+
self.norm1 = nn.LayerNorm(config.d_model)
|
| 258 |
+
self.mlp = HyenaMlp(config)
|
| 259 |
+
self.norm2 = nn.LayerNorm(config.d_model)
|
| 260 |
+
|
| 261 |
+
def forward(self, hidden_states):
|
| 262 |
+
r"""Pass the input through the encoder layer.
|
| 263 |
+
Args:
|
| 264 |
+
hidden_states: the sequence to the encoder layer (required).
|
| 265 |
+
residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
|
| 266 |
+
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
| 267 |
+
before applying the query projection. Useful for e.g., ViT where we only care
|
| 268 |
+
about the CLS token in the last layer.
|
| 269 |
+
"""
|
| 270 |
+
residual = hidden_states
|
| 271 |
+
residual = residual.to(torch.float32)
|
| 272 |
+
hyena_normed = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
|
| 273 |
+
hidden_states = self.mixer(hyena_normed)
|
| 274 |
+
# Tested above here and all is equivalent. That means the mixer is fine!!!
|
| 275 |
+
residual = hidden_states + residual
|
| 276 |
+
hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype))
|
| 277 |
+
residual = residual.to(torch.float32)
|
| 278 |
+
|
| 279 |
+
hidden_states = self.mlp(hidden_states)
|
| 280 |
+
return hidden_states + residual
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
# https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
class HyenaEmbeddings(nn.Module):
|
| 287 |
+
|
| 288 |
+
def __init__(self, config, padding_idx=None):
|
| 289 |
+
"""
|
| 290 |
+
If max_position_embeddings <= 0, there's no position embeddings
|
| 291 |
+
If word_embe_proj_dim is not None (e.g., OPT-350m), we embed to that dimension
|
| 292 |
+
the project up to embed_dim
|
| 293 |
+
"""
|
| 294 |
+
super().__init__()
|
| 295 |
+
vocab_size = config.vocab_size
|
| 296 |
+
if vocab_size % config.pad_vocab_size_multiple != 0:
|
| 297 |
+
vocab_size += config.pad_vocab_size_multiple - (vocab_size % config.pad_vocab_size_multiple)
|
| 298 |
+
self.word_embeddings = nn.Embedding(vocab_size, config.d_model, padding_idx=padding_idx)
|
| 299 |
+
|
| 300 |
+
def forward(self, input_ids):
|
| 301 |
+
"""
|
| 302 |
+
input_ids: (batch, seqlen)
|
| 303 |
+
"""
|
| 304 |
+
embeddings = self.word_embeddings(input_ids)
|
| 305 |
+
return embeddings
|
| 306 |
+
|
| 307 |
+
class HyenaLMBackbone(nn.Module):
|
| 308 |
+
|
| 309 |
+
def __init__(self, config) -> None:
|
| 310 |
+
super().__init__()
|
| 311 |
+
# note max_position_embeddings is 0 for Hyena, and therefore isn't used
|
| 312 |
+
self.embeddings = HyenaEmbeddings(config)
|
| 313 |
+
self.dropout = nn.Dropout(config.embed_dropout)
|
| 314 |
+
|
| 315 |
+
self.layers = nn.ModuleList([HyenaBlock(config) for i in range(config.n_layer)])
|
| 316 |
+
|
| 317 |
+
self.ln_f = nn.LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
| 318 |
+
self.gradient_checkpointing = False
|
| 319 |
+
|
| 320 |
+
def forward(self, input_ids, inputs_embeds=None, output_hidden_states=False):
|
| 321 |
+
all_hidden_states = []
|
| 322 |
+
if inputs_embeds is not None:
|
| 323 |
+
hidden_states = inputs_embeds
|
| 324 |
+
else:
|
| 325 |
+
hidden_states = self.embeddings(input_ids)
|
| 326 |
+
if output_hidden_states:
|
| 327 |
+
all_hidden_states.append(hidden_states)
|
| 328 |
+
|
| 329 |
+
for layer in self.layers:
|
| 330 |
+
if self.gradient_checkpointing and self.training:
|
| 331 |
+
hidden_states = self._gradient_checkpointing_func(layer.__call__, hidden_states)
|
| 332 |
+
else:
|
| 333 |
+
hidden_states = layer(hidden_states)
|
| 334 |
+
if output_hidden_states:
|
| 335 |
+
all_hidden_states.append(hidden_states)
|
| 336 |
+
|
| 337 |
+
hidden_states = self.ln_f(hidden_states.to(dtype=self.ln_f.weight.dtype))
|
| 338 |
+
if output_hidden_states:
|
| 339 |
+
all_hidden_states.append(hidden_states)
|
| 340 |
+
|
| 341 |
+
return hidden_states, all_hidden_states
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
class HyenaDNAPreTrainedModel(PreTrainedModel):
|
| 345 |
+
config_class = HyenaConfig
|
| 346 |
+
base_model_prefix = "hyena"
|
| 347 |
+
supports_gradient_checkpointing = True
|
| 348 |
+
_no_split_modules = ["HyenaBlock"]
|
| 349 |
+
_skip_keys_device_placement = "past_key_values"
|
| 350 |
+
_keys_to_ignore_on_load_missing = [r"freq"] # Shared tensors that safetensors merges
|
| 351 |
+
|
| 352 |
+
def _init_weights(self, module, initializer_range=0.02):
|
| 353 |
+
if isinstance(module, nn.Linear):
|
| 354 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
| 355 |
+
if module.bias is not None:
|
| 356 |
+
nn.init.zeros_(module.bias)
|
| 357 |
+
elif isinstance(module, nn.Embedding):
|
| 358 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
| 359 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
| 360 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
| 361 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
| 362 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
| 363 |
+
#
|
| 364 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
| 365 |
+
for name, p in self.named_parameters():
|
| 366 |
+
if name in ["out_proj.weight", "fc2.weight"]:
|
| 367 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
| 368 |
+
nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * self.config.num_layers))
|
| 369 |
+
# If using GLU activation for now, we scale the std by 2
|
| 370 |
+
elif name in ["output_linear.0.weight"]:
|
| 371 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
| 372 |
+
nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * self.config.num_layers))
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
class HyenaDNAModel(HyenaDNAPreTrainedModel):
|
| 376 |
+
def __init__(self, config, **kwargs) -> None:
|
| 377 |
+
super().__init__(config, **kwargs)
|
| 378 |
+
|
| 379 |
+
self.backbone = HyenaLMBackbone(config)
|
| 380 |
+
self.config = config
|
| 381 |
+
|
| 382 |
+
# Initialize weights and apply final processing
|
| 383 |
+
self.post_init()
|
| 384 |
+
|
| 385 |
+
def forward(self, input_ids, inputs_embeds=None, output_hidden_states=None, return_dict=None):
|
| 386 |
+
output_hidden_states = (
|
| 387 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 388 |
+
)
|
| 389 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 390 |
+
|
| 391 |
+
hidden_states, all_hidden_states = self.backbone(input_ids, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states)
|
| 392 |
+
if return_dict:
|
| 393 |
+
return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states,
|
| 394 |
+
hidden_states=all_hidden_states if output_hidden_states else None)
|
| 395 |
+
elif output_hidden_states:
|
| 396 |
+
return hidden_states, all_hidden_states
|
| 397 |
+
else:
|
| 398 |
+
return hidden_states
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
class HyenaDNAForCausalLM(HyenaDNAPreTrainedModel):
|
| 402 |
+
|
| 403 |
+
def __init__(self, config, **kwargs):
|
| 404 |
+
super().__init__(config, **kwargs)
|
| 405 |
+
self.hyena = HyenaDNAModel(config)
|
| 406 |
+
vocab_size = config.vocab_size
|
| 407 |
+
if vocab_size % config.pad_vocab_size_multiple != 0:
|
| 408 |
+
vocab_size += config.pad_vocab_size_multiple - (vocab_size % config.pad_vocab_size_multiple)
|
| 409 |
+
self.vocab_size = vocab_size
|
| 410 |
+
self.lm_head = nn.Linear(config.d_model, vocab_size, bias=False)
|
| 411 |
+
|
| 412 |
+
# Initialize weights and apply final processing
|
| 413 |
+
self.post_init()
|
| 414 |
+
|
| 415 |
+
def get_input_embeddings(self):
|
| 416 |
+
return self.hyena.backbone.embeddings.word_embeddings
|
| 417 |
+
|
| 418 |
+
def set_input_embeddings(self, value):
|
| 419 |
+
self.hyena.backbone.embeddings.word_embeddings = value
|
| 420 |
+
|
| 421 |
+
def get_output_embeddings(self):
|
| 422 |
+
return self.lm_head
|
| 423 |
+
|
| 424 |
+
def set_output_embeddings(self, new_embeddings):
|
| 425 |
+
self.lm_head = new_embeddings
|
| 426 |
+
|
| 427 |
+
def set_decoder(self, decoder):
|
| 428 |
+
self.hyena = decoder
|
| 429 |
+
|
| 430 |
+
def get_decoder(self):
|
| 431 |
+
return self.hyena
|
| 432 |
+
|
| 433 |
+
def forward(
|
| 434 |
+
self,
|
| 435 |
+
input_ids: torch.LongTensor = None,
|
| 436 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 437 |
+
labels: Optional[torch.LongTensor] = None,
|
| 438 |
+
output_hidden_states: Optional[bool] = None,
|
| 439 |
+
return_dict: Optional[bool] = None,
|
| 440 |
+
) -> Union[Tuple, CausalLMOutput]:
|
| 441 |
+
|
| 442 |
+
output_hidden_states = (
|
| 443 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 444 |
+
)
|
| 445 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 446 |
+
|
| 447 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 448 |
+
outputs = self.hyena(
|
| 449 |
+
input_ids=input_ids,
|
| 450 |
+
inputs_embeds=inputs_embeds,
|
| 451 |
+
output_hidden_states=output_hidden_states,
|
| 452 |
+
return_dict=return_dict,
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
+
hidden_states = outputs[0]
|
| 456 |
+
logits = self.lm_head(hidden_states)
|
| 457 |
+
logits = logits.float()
|
| 458 |
+
|
| 459 |
+
loss = None
|
| 460 |
+
if labels is not None:
|
| 461 |
+
# Shift so that tokens < n predict n
|
| 462 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 463 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 464 |
+
# Flatten the tokens
|
| 465 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 466 |
+
shift_logits = shift_logits.view(-1, self.vocab_size)
|
| 467 |
+
shift_labels = shift_labels.view(-1)
|
| 468 |
+
# Enable model parallelism
|
| 469 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 470 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 471 |
+
|
| 472 |
+
if not return_dict:
|
| 473 |
+
output = (logits,) + outputs[1:]
|
| 474 |
+
return (loss,) + output if loss is not None else output
|
| 475 |
+
|
| 476 |
+
return CausalLMOutput(
|
| 477 |
+
loss=loss,
|
| 478 |
+
logits=logits,
|
| 479 |
+
hidden_states=outputs.hidden_states,
|
| 480 |
+
)
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
class HyenaDNAForSequenceClassification(HyenaDNAPreTrainedModel):
|
| 484 |
+
def __init__(self, config, **kwargs):
|
| 485 |
+
super().__init__(config, **kwargs)
|
| 486 |
+
self.num_labels = kwargs.get("num_labels", config.num_labels)
|
| 487 |
+
self.hyena = HyenaDNAModel(config)
|
| 488 |
+
self.score = nn.Linear(config.d_model, self.num_labels, bias=False)
|
| 489 |
+
|
| 490 |
+
# Initialize weights and apply final processing
|
| 491 |
+
self.post_init()
|
| 492 |
+
|
| 493 |
+
def get_input_embeddings(self):
|
| 494 |
+
return self.hyena.backbone.embeddings.word_embeddings
|
| 495 |
+
|
| 496 |
+
def set_input_embeddings(self, value):
|
| 497 |
+
self.hyena.backbone.embeddings.word_embeddings = value
|
| 498 |
+
|
| 499 |
+
def forward(
|
| 500 |
+
self,
|
| 501 |
+
input_ids: torch.LongTensor = None,
|
| 502 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 503 |
+
labels: Optional[torch.LongTensor] = None,
|
| 504 |
+
output_hidden_states: Optional[bool] = None,
|
| 505 |
+
return_dict: Optional[bool] = None,
|
| 506 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
| 507 |
+
r"""
|
| 508 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 509 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 510 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 511 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 512 |
+
"""
|
| 513 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 514 |
+
|
| 515 |
+
transformer_outputs = self.hyena(
|
| 516 |
+
input_ids,
|
| 517 |
+
inputs_embeds=inputs_embeds,
|
| 518 |
+
output_hidden_states=output_hidden_states,
|
| 519 |
+
return_dict=return_dict,
|
| 520 |
+
)
|
| 521 |
+
hidden_states = transformer_outputs[0]
|
| 522 |
+
logits = self.score(hidden_states)
|
| 523 |
+
|
| 524 |
+
if input_ids is not None:
|
| 525 |
+
batch_size = input_ids.shape[0]
|
| 526 |
+
else:
|
| 527 |
+
batch_size = inputs_embeds.shape[0]
|
| 528 |
+
|
| 529 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
| 530 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
| 531 |
+
if self.config.pad_token_id is None:
|
| 532 |
+
sequence_lengths = -1
|
| 533 |
+
else:
|
| 534 |
+
if input_ids is not None:
|
| 535 |
+
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to(
|
| 536 |
+
logits.device
|
| 537 |
+
)
|
| 538 |
+
else:
|
| 539 |
+
sequence_lengths = -1
|
| 540 |
+
|
| 541 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
| 542 |
+
|
| 543 |
+
loss = None
|
| 544 |
+
if labels is not None:
|
| 545 |
+
labels = labels.to(logits.device)
|
| 546 |
+
if self.config.problem_type is None:
|
| 547 |
+
if self.num_labels == 1:
|
| 548 |
+
self.config.problem_type = "regression"
|
| 549 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 550 |
+
self.config.problem_type = "single_label_classification"
|
| 551 |
+
else:
|
| 552 |
+
self.config.problem_type = "multi_label_classification"
|
| 553 |
+
|
| 554 |
+
if self.config.problem_type == "regression":
|
| 555 |
+
loss_fct = nn.MSELoss()
|
| 556 |
+
if self.num_labels == 1:
|
| 557 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 558 |
+
else:
|
| 559 |
+
loss = loss_fct(pooled_logits, labels)
|
| 560 |
+
elif self.config.problem_type == "single_label_classification":
|
| 561 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 562 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
| 563 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 564 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
| 565 |
+
loss = loss_fct(pooled_logits, labels)
|
| 566 |
+
if not return_dict:
|
| 567 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
| 568 |
+
return ((loss,) + output) if loss is not None else output
|
| 569 |
+
|
| 570 |
+
return SequenceClassifierOutput(
|
| 571 |
+
loss=loss,
|
| 572 |
+
logits=pooled_logits,
|
| 573 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 574 |
+
)
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8c62ff531c88a2fb2ff31aed94d6ea1a41db671fb52c5139132045f668e7eab2
|
| 3 |
+
size 28549018
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "[BOS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "[CLS]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "[SEP]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "[MASK]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "[PAD]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "[SEP]",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "[UNK]",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenization_hyena.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
| 2 |
+
from typing import List, Optional, Union, Dict, Sequence, Tuple
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import json
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class HyenaDNATokenizer(PreTrainedTokenizer):
|
| 9 |
+
model_input_names = ["input_ids"]
|
| 10 |
+
|
| 11 |
+
def __init__(self,
|
| 12 |
+
model_max_length: int,
|
| 13 |
+
bos_token="[BOS]",
|
| 14 |
+
eos_token="[SEP]",
|
| 15 |
+
sep_token="[SEP]",
|
| 16 |
+
cls_token="[CLS]",
|
| 17 |
+
pad_token="[PAD]",
|
| 18 |
+
mask_token="[MASK]",
|
| 19 |
+
unk_token="[UNK]",
|
| 20 |
+
**kwargs):
|
| 21 |
+
"""Character tokenizer for Hugging Face transformers.
|
| 22 |
+
Args:
|
| 23 |
+
characters (Sequence[str]): List of desired characters. Any character which
|
| 24 |
+
is not included in this list will be replaced by a special token called
|
| 25 |
+
[UNK] with id=6. Following are list of all of the special tokens with
|
| 26 |
+
their corresponding ids:
|
| 27 |
+
"[CLS]": 0
|
| 28 |
+
"[SEP]": 1
|
| 29 |
+
"[BOS]": 2
|
| 30 |
+
"[MASK]": 3
|
| 31 |
+
"[PAD]": 4
|
| 32 |
+
"[RESERVED]": 5
|
| 33 |
+
"[UNK]": 6
|
| 34 |
+
an id (starting at 7) will be assigned to each character.
|
| 35 |
+
model_max_length (int): Model maximum sequence length.
|
| 36 |
+
"""
|
| 37 |
+
self.characters = ('A', 'C', 'G', 'T', 'N')
|
| 38 |
+
self.model_max_length = model_max_length
|
| 39 |
+
|
| 40 |
+
self._vocab_str_to_int = {
|
| 41 |
+
"[CLS]": 0,
|
| 42 |
+
"[SEP]": 1,
|
| 43 |
+
"[BOS]": 2,
|
| 44 |
+
"[MASK]": 3,
|
| 45 |
+
"[PAD]": 4,
|
| 46 |
+
"[RESERVED]": 5,
|
| 47 |
+
"[UNK]": 6,
|
| 48 |
+
**{ch: i + 7 for i, ch in enumerate(self.characters)},
|
| 49 |
+
}
|
| 50 |
+
self._vocab_int_to_str = {v: k for k, v in self._vocab_str_to_int.items()}
|
| 51 |
+
add_prefix_space = kwargs.pop("add_prefix_space", False)
|
| 52 |
+
padding_side = kwargs.pop("padding_side", "left")
|
| 53 |
+
|
| 54 |
+
super().__init__(
|
| 55 |
+
bos_token=bos_token,
|
| 56 |
+
eos_token=eos_token,
|
| 57 |
+
sep_token=sep_token,
|
| 58 |
+
cls_token=cls_token,
|
| 59 |
+
pad_token=pad_token,
|
| 60 |
+
mask_token=mask_token,
|
| 61 |
+
unk_token=unk_token,
|
| 62 |
+
add_prefix_space=add_prefix_space,
|
| 63 |
+
model_max_length=model_max_length,
|
| 64 |
+
padding_side=padding_side,
|
| 65 |
+
**kwargs,
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
@property
|
| 69 |
+
def vocab_size(self) -> int:
|
| 70 |
+
return len(self._vocab_str_to_int)
|
| 71 |
+
|
| 72 |
+
def _tokenize(self, text: str) -> List[str]:
|
| 73 |
+
return list(text)
|
| 74 |
+
|
| 75 |
+
def _convert_token_to_id(self, token: str) -> int:
|
| 76 |
+
return self._vocab_str_to_int.get(token, self._vocab_str_to_int["[UNK]"])
|
| 77 |
+
|
| 78 |
+
def _convert_id_to_token(self, index: int) -> str:
|
| 79 |
+
return self._vocab_int_to_str[index]
|
| 80 |
+
|
| 81 |
+
def convert_tokens_to_string(self, tokens):
|
| 82 |
+
return "".join(tokens)
|
| 83 |
+
|
| 84 |
+
def get_special_tokens_mask(
|
| 85 |
+
self,
|
| 86 |
+
token_ids_0: List[int],
|
| 87 |
+
token_ids_1: Optional[List[int]] = None,
|
| 88 |
+
already_has_special_tokens: bool = False,
|
| 89 |
+
) -> List[int]:
|
| 90 |
+
if already_has_special_tokens:
|
| 91 |
+
return super().get_special_tokens_mask(
|
| 92 |
+
token_ids_0=token_ids_0,
|
| 93 |
+
token_ids_1=token_ids_1,
|
| 94 |
+
already_has_special_tokens=True,
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
result = ([0] * len(token_ids_0)) + [1]
|
| 98 |
+
if token_ids_1 is not None:
|
| 99 |
+
result += ([0] * len(token_ids_1)) + [1]
|
| 100 |
+
return result
|
| 101 |
+
|
| 102 |
+
def build_inputs_with_special_tokens(
|
| 103 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 104 |
+
) -> List[int]:
|
| 105 |
+
sep = [self.sep_token_id]
|
| 106 |
+
# cls = [self.cls_token_id]
|
| 107 |
+
result = token_ids_0 + sep
|
| 108 |
+
if token_ids_1 is not None:
|
| 109 |
+
result += token_ids_1 + sep
|
| 110 |
+
return result
|
| 111 |
+
|
| 112 |
+
def get_vocab(self) -> Dict[str, int]:
|
| 113 |
+
return self._vocab_str_to_int
|
| 114 |
+
|
| 115 |
+
# HyenaDNA has a fixed vocabulary with no vocab file
|
| 116 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple:
|
| 117 |
+
return ()
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"0": {
|
| 5 |
+
"content": "[CLS]",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": false,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"1": {
|
| 13 |
+
"content": "[SEP]",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"2": {
|
| 21 |
+
"content": "[BOS]",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"3": {
|
| 29 |
+
"content": "[MASK]",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"4": {
|
| 37 |
+
"content": "[PAD]",
|
| 38 |
+
"lstrip": false,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
},
|
| 44 |
+
"6": {
|
| 45 |
+
"content": "[UNK]",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false,
|
| 50 |
+
"special": true
|
| 51 |
+
}
|
| 52 |
+
},
|
| 53 |
+
"auto_map": {
|
| 54 |
+
"AutoTokenizer": [
|
| 55 |
+
"jiaxie/Hyena-SARS-CoV2--tokenization_hyena.HyenaDNATokenizer",
|
| 56 |
+
null
|
| 57 |
+
]
|
| 58 |
+
},
|
| 59 |
+
"bos_token": "[BOS]",
|
| 60 |
+
"clean_up_tokenization_spaces": true,
|
| 61 |
+
"cls_token": "[CLS]",
|
| 62 |
+
"eos_token": "[SEP]",
|
| 63 |
+
"extra_special_tokens": {},
|
| 64 |
+
"mask_token": "[MASK]",
|
| 65 |
+
"model_max_length": 160002,
|
| 66 |
+
"pad_token": "[PAD]",
|
| 67 |
+
"padding_side": "left",
|
| 68 |
+
"sep_token": "[SEP]",
|
| 69 |
+
"tokenizer_class": "HyenaDNATokenizer",
|
| 70 |
+
"unk_token": "[UNK]"
|
| 71 |
+
}
|