--- library_name: transformers license: apache-2.0 base_model: dandelin/vilt-b32-finetuned-nlvr2 tags: - image-text-classification - generated_from_trainer metrics: - accuracy model-index: - name: '42' results: [] --- # 42 This model is a fine-tuned version of [dandelin/vilt-b32-finetuned-nlvr2](https://huggingface.co/dandelin/vilt-b32-finetuned-nlvr2) on the nlvr2 dataset. It achieves the following results on the evaluation set: - Loss: -4.5175 - Accuracy: 0.5726 - Dt Accuracy: 0.5726 - Df Accuracy: 0.5995 - Unlearn Overall Accuracy: 0.7689 - Unlearn Time: None ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Overall Accuracy | Unlearn Overall Accuracy | Time | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------------:|:------------------------:|:----:| | No log | 1.0 | 108 | -2.1890 | 0.7048 | 0.7293 | 0.7293 | None | | No log | 2.0 | 216 | -4.5175 | 0.5995 | 0.7689 | 0.7689 | None | ### Framework versions - Transformers 4.48.0 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.21.0