Jamie@TitanML
commited on
Commit
·
718159e
1
Parent(s):
3091958
Delete modeling_flash_llama.py
Browse files- modeling_flash_llama.py +0 -1010
modeling_flash_llama.py
DELETED
|
@@ -1,1010 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# From https://huggingface.co/togethercomputer/LLaMA-2-7B-32K/blob/main/modeling_flash_llama.py
|
| 3 |
-
# With fix from Alex Birch: https://huggingface.co/togethercomputer/LLaMA-2-7B-32K/discussions/17
|
| 4 |
-
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
| 5 |
-
#
|
| 6 |
-
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 7 |
-
# and OPT implementations in this library. It has been modified from its
|
| 8 |
-
# original forms to accommodate minor architectural differences compared
|
| 9 |
-
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 10 |
-
#
|
| 11 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 12 |
-
# you may not use this file except in compliance with the License.
|
| 13 |
-
# You may obtain a copy of the License at
|
| 14 |
-
#
|
| 15 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 16 |
-
#
|
| 17 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 18 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 19 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 20 |
-
# See the License for the specific language governing permissions and
|
| 21 |
-
# limitations under the License.
|
| 22 |
-
""" PyTorch LLaMA model."""
|
| 23 |
-
from typing import List, Optional, Tuple, Union
|
| 24 |
-
|
| 25 |
-
import torch
|
| 26 |
-
import torch.nn.functional as F
|
| 27 |
-
import torch.utils.checkpoint
|
| 28 |
-
from torch import nn
|
| 29 |
-
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 30 |
-
|
| 31 |
-
from transformers.activations import ACT2FN
|
| 32 |
-
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
| 33 |
-
from transformers.modeling_utils import PreTrainedModel
|
| 34 |
-
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
| 35 |
-
from transformers.models.llama.configuration_llama import LlamaConfig
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
try:
|
| 39 |
-
from flash_attn.flash_attn_interface import (
|
| 40 |
-
flash_attn_kvpacked_func,
|
| 41 |
-
flash_attn_varlen_kvpacked_func,
|
| 42 |
-
)
|
| 43 |
-
from flash_attn.bert_padding import unpad_input, pad_input
|
| 44 |
-
flash_attn_v2_installed = True
|
| 45 |
-
print('>>>> Flash Attention installed')
|
| 46 |
-
except ImportError:
|
| 47 |
-
flash_attn_v2_installed = False
|
| 48 |
-
raise ImportError('Please install Flash Attention: `pip install flash-attn --no-build-isolation`')
|
| 49 |
-
|
| 50 |
-
try:
|
| 51 |
-
from flash_attn.layers.rotary import apply_rotary_emb_func
|
| 52 |
-
flash_rope_installed = True
|
| 53 |
-
print('>>>> Flash RoPE installed')
|
| 54 |
-
except ImportError:
|
| 55 |
-
flash_rope_installed = False
|
| 56 |
-
raise ImportError('Please install RoPE kernels: `pip install git+https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/rotary`')
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
logger = logging.get_logger(__name__)
|
| 60 |
-
|
| 61 |
-
_CONFIG_FOR_DOC = "LlamaConfig"
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
# @torch.jit.script
|
| 65 |
-
def rmsnorm_func(hidden_states, weight, variance_epsilon):
|
| 66 |
-
input_dtype = hidden_states.dtype
|
| 67 |
-
hidden_states = hidden_states.to(torch.float32)
|
| 68 |
-
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 69 |
-
hidden_states = hidden_states * torch.rsqrt(variance + variance_epsilon)
|
| 70 |
-
return (weight * hidden_states).to(input_dtype)
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
class LlamaRMSNorm(nn.Module):
|
| 74 |
-
def __init__(self, hidden_size, eps=1e-6):
|
| 75 |
-
"""
|
| 76 |
-
LlamaRMSNorm is equivalent to T5LayerNorm
|
| 77 |
-
"""
|
| 78 |
-
super().__init__()
|
| 79 |
-
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 80 |
-
self.register_buffer(
|
| 81 |
-
"variance_epsilon",
|
| 82 |
-
torch.tensor(eps),
|
| 83 |
-
persistent=False,
|
| 84 |
-
)
|
| 85 |
-
|
| 86 |
-
def forward(self, hidden_states):
|
| 87 |
-
return rmsnorm_func(hidden_states, self.weight, self.variance_epsilon)
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
class FlashRotaryEmbedding(torch.nn.Module):
|
| 91 |
-
"""
|
| 92 |
-
The rotary position embeddings from RoFormer_ (Su et. al).
|
| 93 |
-
A crucial insight from the method is that the query and keys are
|
| 94 |
-
transformed by rotation matrices which depend on the relative positions.
|
| 95 |
-
|
| 96 |
-
Other implementations are available in the Rotary Transformer repo_ and in
|
| 97 |
-
GPT-NeoX_, GPT-NeoX was an inspiration
|
| 98 |
-
|
| 99 |
-
.. _RoFormer: https://arxiv.org/abs/2104.09864
|
| 100 |
-
.. _repo: https://github.com/ZhuiyiTechnology/roformer
|
| 101 |
-
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
|
| 102 |
-
|
| 103 |
-
If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
|
| 104 |
-
A recommended value for scale_base is 512: https://github.com/HazyResearch/flash-attention/issues/96
|
| 105 |
-
Reference: https://github.com/sunyt32/torchscale/blob/main/torchscale/component/xpos_relative_position.py
|
| 106 |
-
"""
|
| 107 |
-
|
| 108 |
-
def __init__(self, dim: int, base=10000.0, interleaved=False, scale_base=None,
|
| 109 |
-
scaling_factor=1.0, pos_idx_in_fp32=True, device=None):
|
| 110 |
-
"""
|
| 111 |
-
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
| 112 |
-
of 1st half and 2nd half (GPT-NeoX style).
|
| 113 |
-
pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
|
| 114 |
-
otherwise they might be in lower precision.
|
| 115 |
-
This option was added because previously (before 2023-07-02), when we construct
|
| 116 |
-
the position indices, we use the dtype of self.inv_freq. In most cases this would
|
| 117 |
-
be fp32, but if the model is trained in pure bf16 (not mixed precision), then
|
| 118 |
-
self.inv_freq would be bf16, and the position indices are also in bf16.
|
| 119 |
-
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
|
| 120 |
-
embeddings for some positions will coincide.
|
| 121 |
-
To maintain compatibility with models previously trained in pure bf16,
|
| 122 |
-
we add this option.
|
| 123 |
-
scaling_factor: RotaryEmbedding extended with linear scaling.
|
| 124 |
-
"""
|
| 125 |
-
super().__init__()
|
| 126 |
-
self.dim = dim
|
| 127 |
-
self.base = float(base)
|
| 128 |
-
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
| 129 |
-
# Generate and save the inverse frequency buffer (non trainable)
|
| 130 |
-
inv_freq = self._compute_inv_freq(device)
|
| 131 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 132 |
-
self.interleaved = interleaved
|
| 133 |
-
self.scale_base = scale_base
|
| 134 |
-
self.scaling_factor = scaling_factor
|
| 135 |
-
scale = ((torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim)
|
| 136 |
-
/ (1.4 * dim) if scale_base is not None else None)
|
| 137 |
-
self.register_buffer("scale", scale)
|
| 138 |
-
|
| 139 |
-
self._seq_len_cached = 0
|
| 140 |
-
self._cos_cached = None
|
| 141 |
-
self._sin_cached = None
|
| 142 |
-
self._cos_k_cached = None
|
| 143 |
-
self._sin_k_cached = None
|
| 144 |
-
|
| 145 |
-
def _compute_inv_freq(self, device=None):
|
| 146 |
-
return 1 / (self.base ** (torch.arange(0, self.dim, 2, device=device,
|
| 147 |
-
dtype=torch.float32) / self.dim))
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
| 151 |
-
# Reset the tables if the sequence length has changed,
|
| 152 |
-
# if we're on a new device (possibly due to tracing for instance),
|
| 153 |
-
# or if we're switching from inference mode to training
|
| 154 |
-
if (seqlen > self._seq_len_cached or self._cos_cached.device != device
|
| 155 |
-
or self._cos_cached.dtype != dtype
|
| 156 |
-
or (self.training and self._cos_cached.is_inference())):
|
| 157 |
-
self._seq_len_cached = seqlen
|
| 158 |
-
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
| 159 |
-
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
| 160 |
-
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
| 161 |
-
if self.pos_idx_in_fp32:
|
| 162 |
-
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
| 163 |
-
t /= self.scaling_factor
|
| 164 |
-
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
| 165 |
-
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
| 166 |
-
# cos & sin output to change significantly.
|
| 167 |
-
# We want to recompute self.inv_freq if it was not loaded in fp32
|
| 168 |
-
if self.inv_freq.dtype != torch.float32:
|
| 169 |
-
inv_freq = self.inv_freq.to(torch.float32)
|
| 170 |
-
else:
|
| 171 |
-
inv_freq = self.inv_freq
|
| 172 |
-
else:
|
| 173 |
-
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
| 174 |
-
t /= self.scaling_factor
|
| 175 |
-
inv_freq = self.inv_freq
|
| 176 |
-
# Don't do einsum, it converts fp32 to fp16 under AMP
|
| 177 |
-
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 178 |
-
freqs = torch.outer(t, inv_freq)
|
| 179 |
-
if self.scale is None:
|
| 180 |
-
self._cos_cached = torch.cos(freqs).to(dtype)
|
| 181 |
-
self._sin_cached = torch.sin(freqs).to(dtype)
|
| 182 |
-
else:
|
| 183 |
-
power = ((torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
|
| 184 |
-
- seqlen // 2) / self.scale_base)
|
| 185 |
-
scale = self.scale.to(device=power.device) ** power.unsqueeze(-1)
|
| 186 |
-
# We want the multiplication by scale to happen in fp32
|
| 187 |
-
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
| 188 |
-
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
| 189 |
-
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
| 190 |
-
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
| 191 |
-
|
| 192 |
-
def forward(self, q: torch.Tensor, k: torch.Tensor, seqlen_offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 193 |
-
"""
|
| 194 |
-
q: (batch, seqlen, nheads, headdim)
|
| 195 |
-
k: (batch, seqlen, nheads, headdim)
|
| 196 |
-
seqlen_offset: can be used in generation where the qkv being passed in is only the last
|
| 197 |
-
token in the batch.
|
| 198 |
-
"""
|
| 199 |
-
self._update_cos_sin_cache(q.shape[1] + seqlen_offset, device=q.device, dtype=q.dtype)
|
| 200 |
-
if self.scale is None:
|
| 201 |
-
return apply_rotary_emb_func(
|
| 202 |
-
q, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:],
|
| 203 |
-
self.interleaved, True # inplace=True
|
| 204 |
-
), apply_rotary_emb_func(
|
| 205 |
-
k, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:],
|
| 206 |
-
self.interleaved, True # inplace=True
|
| 207 |
-
)
|
| 208 |
-
else:
|
| 209 |
-
assert False
|
| 210 |
-
|
| 211 |
-
class LlamaMLP(nn.Module):
|
| 212 |
-
def __init__(self, config):
|
| 213 |
-
super().__init__()
|
| 214 |
-
self.config = config
|
| 215 |
-
self.hidden_size = config.hidden_size
|
| 216 |
-
self.intermediate_size = config.intermediate_size
|
| 217 |
-
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 218 |
-
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 219 |
-
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 220 |
-
self.act_fn = ACT2FN[config.hidden_act]
|
| 221 |
-
|
| 222 |
-
def forward(self, x):
|
| 223 |
-
if self.config.pretraining_tp > 1:
|
| 224 |
-
slice = self.intermediate_size // self.config.pretraining_tp
|
| 225 |
-
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
| 226 |
-
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
| 227 |
-
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
| 228 |
-
|
| 229 |
-
gate_proj = torch.cat(
|
| 230 |
-
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
| 231 |
-
)
|
| 232 |
-
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
| 233 |
-
|
| 234 |
-
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
| 235 |
-
down_proj = [
|
| 236 |
-
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
| 237 |
-
]
|
| 238 |
-
down_proj = sum(down_proj)
|
| 239 |
-
else:
|
| 240 |
-
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 241 |
-
|
| 242 |
-
return down_proj
|
| 243 |
-
|
| 244 |
-
@torch.jit.script
|
| 245 |
-
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 246 |
-
"""
|
| 247 |
-
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 248 |
-
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 249 |
-
"""
|
| 250 |
-
batch, slen, _, num_key_value_heads, head_dim = hidden_states.shape
|
| 251 |
-
if n_rep == 1:
|
| 252 |
-
return hidden_states
|
| 253 |
-
hidden_states = hidden_states[:, :, :, :, None, :].expand(batch, slen, 2, num_key_value_heads, n_rep, head_dim)
|
| 254 |
-
return hidden_states.reshape(batch, slen, 2, num_key_value_heads * n_rep, head_dim)
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
class LlamaAttention(nn.Module):
|
| 258 |
-
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 259 |
-
|
| 260 |
-
def __init__(self, config: LlamaConfig):
|
| 261 |
-
super().__init__()
|
| 262 |
-
self.config = config
|
| 263 |
-
self.hidden_size = config.hidden_size
|
| 264 |
-
self.num_heads = config.num_attention_heads
|
| 265 |
-
self.head_dim = self.hidden_size // self.num_heads
|
| 266 |
-
self.num_key_value_heads = config.num_key_value_heads
|
| 267 |
-
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 268 |
-
self.max_position_embeddings = config.max_position_embeddings
|
| 269 |
-
|
| 270 |
-
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 271 |
-
raise ValueError(
|
| 272 |
-
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 273 |
-
f" and `num_heads`: {self.num_heads})."
|
| 274 |
-
)
|
| 275 |
-
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
| 276 |
-
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
| 277 |
-
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
| 278 |
-
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
| 279 |
-
|
| 280 |
-
self.register_buffer(
|
| 281 |
-
"norm_factor",
|
| 282 |
-
torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()),
|
| 283 |
-
persistent=False,
|
| 284 |
-
)
|
| 285 |
-
|
| 286 |
-
if self.config.rope_scaling is None:
|
| 287 |
-
scaling_factor = 1
|
| 288 |
-
else:
|
| 289 |
-
scaling_type = self.config.rope_scaling["type"]
|
| 290 |
-
scaling_factor = self.config.rope_scaling["factor"]
|
| 291 |
-
assert scaling_type == 'linear'
|
| 292 |
-
|
| 293 |
-
self.rotary_emb = FlashRotaryEmbedding(
|
| 294 |
-
self.head_dim, base=10000, interleaved=False, scaling_factor=scaling_factor,
|
| 295 |
-
)
|
| 296 |
-
|
| 297 |
-
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 298 |
-
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 299 |
-
|
| 300 |
-
def forward(
|
| 301 |
-
self,
|
| 302 |
-
hidden_states: torch.Tensor,
|
| 303 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 304 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 305 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 306 |
-
output_attentions: bool = False,
|
| 307 |
-
use_cache: bool = False,
|
| 308 |
-
is_padded_inputs: Optional[bool] = False,
|
| 309 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 310 |
-
bsz, q_len, h_size = hidden_states.size()
|
| 311 |
-
|
| 312 |
-
has_layer_past = past_key_value is not None
|
| 313 |
-
|
| 314 |
-
if has_layer_past:
|
| 315 |
-
past_kv = past_key_value[0]
|
| 316 |
-
past_len = past_key_value[1]
|
| 317 |
-
else:
|
| 318 |
-
past_len = 0
|
| 319 |
-
|
| 320 |
-
if self.config.pretraining_tp > 1:
|
| 321 |
-
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
| 322 |
-
query_slices = self.q_proj.weight.split(
|
| 323 |
-
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
| 324 |
-
)
|
| 325 |
-
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
| 326 |
-
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
| 327 |
-
|
| 328 |
-
q = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
| 329 |
-
q = torch.cat(q, dim=-1)
|
| 330 |
-
|
| 331 |
-
k = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
| 332 |
-
k = torch.cat(k, dim=-1)
|
| 333 |
-
|
| 334 |
-
v = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
| 335 |
-
v = torch.cat(v, dim=-1)
|
| 336 |
-
|
| 337 |
-
else:
|
| 338 |
-
q = self.q_proj(hidden_states)
|
| 339 |
-
k = self.k_proj(hidden_states)
|
| 340 |
-
v = self.v_proj(hidden_states)
|
| 341 |
-
|
| 342 |
-
q = q.view(bsz, q_len, self.num_heads, self.head_dim)
|
| 343 |
-
k = k.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
| 344 |
-
v = v.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
| 345 |
-
|
| 346 |
-
q, k = self.rotary_emb(q, k, past_len)
|
| 347 |
-
|
| 348 |
-
kv = torch.stack([k, v], 2)
|
| 349 |
-
kv = repeat_kv(kv, self.num_key_value_groups)
|
| 350 |
-
|
| 351 |
-
# Cache QKV values
|
| 352 |
-
if has_layer_past:
|
| 353 |
-
new_len = past_len+q.size(1)
|
| 354 |
-
if new_len > past_kv.size(1):
|
| 355 |
-
past_kv = torch.cat([past_kv, torch.empty(bsz, 256, 2, kv.size(3), kv.size(4), dtype=kv.dtype, device=kv.device)], 1)
|
| 356 |
-
past_kv[:, past_len:new_len] = kv
|
| 357 |
-
kv = past_kv[:, :new_len]
|
| 358 |
-
else:
|
| 359 |
-
past_kv = kv
|
| 360 |
-
|
| 361 |
-
past_key_value = (past_kv, past_len+q.size(1)) if use_cache else None
|
| 362 |
-
|
| 363 |
-
if is_padded_inputs:
|
| 364 |
-
|
| 365 |
-
# varlen, ignore padding tokens, efficient for large batch with many paddings
|
| 366 |
-
|
| 367 |
-
assert attention_mask is not None
|
| 368 |
-
|
| 369 |
-
unpadded_kv, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(kv, attention_mask)
|
| 370 |
-
unpadded_q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, attention_mask[:, -q.size(1):])
|
| 371 |
-
attn_outputs = flash_attn_varlen_kvpacked_func(
|
| 372 |
-
unpadded_q, unpadded_kv, cu_seqlens_q, cu_seqlens_k,
|
| 373 |
-
max_seqlen_q, max_seqlen_k,
|
| 374 |
-
dropout_p=0.0, softmax_scale=1.0/self.norm_factor,
|
| 375 |
-
causal=(not has_layer_past), return_attn_probs=output_attentions
|
| 376 |
-
)
|
| 377 |
-
|
| 378 |
-
attn_output = attn_outputs[0] if output_attentions else attn_outputs
|
| 379 |
-
attn_output = pad_input(
|
| 380 |
-
attn_output, indices_q, bsz, q_len
|
| 381 |
-
).reshape(bsz, q_len, h_size)
|
| 382 |
-
attn_weights = attn_outputs[2] if output_attentions else None
|
| 383 |
-
|
| 384 |
-
else:
|
| 385 |
-
|
| 386 |
-
# no padding tokens, more efficient
|
| 387 |
-
|
| 388 |
-
attn_outputs = flash_attn_kvpacked_func(
|
| 389 |
-
q, kv, dropout_p=0.0, softmax_scale=1.0/self.norm_factor, causal=(not has_layer_past), return_attn_probs=output_attentions)
|
| 390 |
-
|
| 391 |
-
attn_output = attn_outputs[0] if output_attentions else attn_outputs
|
| 392 |
-
attn_output = attn_output.reshape(bsz, q_len, h_size)
|
| 393 |
-
attn_weights = attn_outputs[2] if output_attentions else None
|
| 394 |
-
|
| 395 |
-
if self.config.pretraining_tp > 1:
|
| 396 |
-
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
| 397 |
-
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
| 398 |
-
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
| 399 |
-
else:
|
| 400 |
-
attn_output = self.o_proj(attn_output)
|
| 401 |
-
|
| 402 |
-
if not output_attentions:
|
| 403 |
-
attn_weights = None
|
| 404 |
-
|
| 405 |
-
return attn_output, attn_weights, past_key_value
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
class LlamaDecoderLayer(nn.Module):
|
| 409 |
-
def __init__(self, config: LlamaConfig):
|
| 410 |
-
super().__init__()
|
| 411 |
-
self.hidden_size = config.hidden_size
|
| 412 |
-
self.self_attn = LlamaAttention(config=config)
|
| 413 |
-
self.mlp = LlamaMLP(config)
|
| 414 |
-
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 415 |
-
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 416 |
-
|
| 417 |
-
def forward(
|
| 418 |
-
self,
|
| 419 |
-
hidden_states: torch.Tensor,
|
| 420 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 421 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 422 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 423 |
-
is_padded_inputs: Optional[bool] = False,
|
| 424 |
-
output_attentions: Optional[bool] = False,
|
| 425 |
-
use_cache: Optional[bool] = False,
|
| 426 |
-
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 427 |
-
"""
|
| 428 |
-
Args:
|
| 429 |
-
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 430 |
-
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
| 431 |
-
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
| 432 |
-
output_attentions (`bool`, *optional*):
|
| 433 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 434 |
-
returned tensors for more detail.
|
| 435 |
-
use_cache (`bool`, *optional*):
|
| 436 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 437 |
-
(see `past_key_values`).
|
| 438 |
-
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 439 |
-
"""
|
| 440 |
-
|
| 441 |
-
residual = hidden_states
|
| 442 |
-
|
| 443 |
-
hidden_states = self.input_layernorm(hidden_states)
|
| 444 |
-
|
| 445 |
-
# Self Attention
|
| 446 |
-
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 447 |
-
hidden_states=hidden_states,
|
| 448 |
-
attention_mask=attention_mask,
|
| 449 |
-
position_ids=position_ids,
|
| 450 |
-
past_key_value=past_key_value,
|
| 451 |
-
output_attentions=output_attentions,
|
| 452 |
-
use_cache=use_cache,
|
| 453 |
-
is_padded_inputs=is_padded_inputs,
|
| 454 |
-
)
|
| 455 |
-
hidden_states = residual + hidden_states
|
| 456 |
-
|
| 457 |
-
# Fully Connected
|
| 458 |
-
residual = hidden_states
|
| 459 |
-
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 460 |
-
hidden_states = self.mlp(hidden_states)
|
| 461 |
-
hidden_states = residual + hidden_states
|
| 462 |
-
|
| 463 |
-
outputs = (hidden_states,)
|
| 464 |
-
|
| 465 |
-
if output_attentions:
|
| 466 |
-
outputs += (self_attn_weights,)
|
| 467 |
-
|
| 468 |
-
if use_cache:
|
| 469 |
-
outputs += (present_key_value,)
|
| 470 |
-
|
| 471 |
-
return outputs
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
LLAMA_START_DOCSTRING = r"""
|
| 475 |
-
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 476 |
-
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 477 |
-
etc.)
|
| 478 |
-
|
| 479 |
-
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 480 |
-
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 481 |
-
and behavior.
|
| 482 |
-
|
| 483 |
-
Parameters:
|
| 484 |
-
config ([`LlamaConfig`]):
|
| 485 |
-
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 486 |
-
load the weights associated with the model, only the configuration. Check out the
|
| 487 |
-
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 488 |
-
"""
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
@add_start_docstrings(
|
| 492 |
-
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
| 493 |
-
LLAMA_START_DOCSTRING,
|
| 494 |
-
)
|
| 495 |
-
class LlamaPreTrainedModel(PreTrainedModel):
|
| 496 |
-
config_class = LlamaConfig
|
| 497 |
-
base_model_prefix = "model"
|
| 498 |
-
supports_gradient_checkpointing = True
|
| 499 |
-
_no_split_modules = ["LlamaDecoderLayer"]
|
| 500 |
-
_skip_keys_device_placement = "past_key_values"
|
| 501 |
-
|
| 502 |
-
def _init_weights(self, module):
|
| 503 |
-
std = self.config.initializer_range
|
| 504 |
-
if isinstance(module, nn.Linear):
|
| 505 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
| 506 |
-
if module.bias is not None:
|
| 507 |
-
module.bias.data.zero_()
|
| 508 |
-
elif isinstance(module, nn.Embedding):
|
| 509 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
| 510 |
-
if module.padding_idx is not None:
|
| 511 |
-
module.weight.data[module.padding_idx].zero_()
|
| 512 |
-
|
| 513 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
| 514 |
-
if isinstance(module, LlamaModel):
|
| 515 |
-
module.gradient_checkpointing = value
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
LLAMA_INPUTS_DOCSTRING = r"""
|
| 519 |
-
Args:
|
| 520 |
-
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 521 |
-
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 522 |
-
it.
|
| 523 |
-
|
| 524 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 525 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
| 526 |
-
|
| 527 |
-
[What are input IDs?](../glossary#input-ids)
|
| 528 |
-
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 529 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 530 |
-
|
| 531 |
-
- 1 for tokens that are **not masked**,
|
| 532 |
-
- 0 for tokens that are **masked**.
|
| 533 |
-
|
| 534 |
-
[What are attention masks?](../glossary#attention-mask)
|
| 535 |
-
|
| 536 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 537 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
| 538 |
-
|
| 539 |
-
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
| 540 |
-
`past_key_values`).
|
| 541 |
-
|
| 542 |
-
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 543 |
-
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 544 |
-
information on the default strategy.
|
| 545 |
-
|
| 546 |
-
- 1 indicates the head is **not masked**,
|
| 547 |
-
- 0 indicates the head is **masked**.
|
| 548 |
-
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 549 |
-
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 550 |
-
config.n_positions - 1]`.
|
| 551 |
-
|
| 552 |
-
[What are position IDs?](../glossary#position-ids)
|
| 553 |
-
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 554 |
-
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 555 |
-
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
| 556 |
-
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
| 557 |
-
|
| 558 |
-
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 559 |
-
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
| 560 |
-
|
| 561 |
-
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
| 562 |
-
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
| 563 |
-
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 564 |
-
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 565 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 566 |
-
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 567 |
-
model's internal embedding lookup matrix.
|
| 568 |
-
use_cache (`bool`, *optional*):
|
| 569 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 570 |
-
`past_key_values`).
|
| 571 |
-
output_attentions (`bool`, *optional*):
|
| 572 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 573 |
-
tensors for more detail.
|
| 574 |
-
output_hidden_states (`bool`, *optional*):
|
| 575 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 576 |
-
more detail.
|
| 577 |
-
return_dict (`bool`, *optional*):
|
| 578 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 579 |
-
"""
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
@add_start_docstrings(
|
| 583 |
-
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
| 584 |
-
LLAMA_START_DOCSTRING,
|
| 585 |
-
)
|
| 586 |
-
class LlamaModel(LlamaPreTrainedModel):
|
| 587 |
-
"""
|
| 588 |
-
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
| 589 |
-
|
| 590 |
-
Args:
|
| 591 |
-
config: LlamaConfig
|
| 592 |
-
"""
|
| 593 |
-
|
| 594 |
-
def __init__(self, config: LlamaConfig):
|
| 595 |
-
super().__init__(config)
|
| 596 |
-
self.padding_idx = config.pad_token_id
|
| 597 |
-
self.vocab_size = config.vocab_size
|
| 598 |
-
|
| 599 |
-
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 600 |
-
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 601 |
-
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 602 |
-
|
| 603 |
-
self.gradient_checkpointing = False
|
| 604 |
-
# Initialize weights and apply final processing
|
| 605 |
-
self.post_init()
|
| 606 |
-
|
| 607 |
-
def get_input_embeddings(self):
|
| 608 |
-
return self.embed_tokens
|
| 609 |
-
|
| 610 |
-
def set_input_embeddings(self, value):
|
| 611 |
-
self.embed_tokens = value
|
| 612 |
-
|
| 613 |
-
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
| 614 |
-
def forward(
|
| 615 |
-
self,
|
| 616 |
-
input_ids: torch.LongTensor = None,
|
| 617 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 618 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 619 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 620 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 621 |
-
use_cache: Optional[bool] = None,
|
| 622 |
-
output_attentions: Optional[bool] = None,
|
| 623 |
-
output_hidden_states: Optional[bool] = None,
|
| 624 |
-
return_dict: Optional[bool] = None,
|
| 625 |
-
is_padded_inputs: Optional[bool] = False,
|
| 626 |
-
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 627 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 628 |
-
output_hidden_states = (
|
| 629 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 630 |
-
)
|
| 631 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 632 |
-
|
| 633 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 634 |
-
|
| 635 |
-
# retrieve input_ids and inputs_embeds
|
| 636 |
-
if input_ids is not None and inputs_embeds is not None:
|
| 637 |
-
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
| 638 |
-
elif input_ids is not None:
|
| 639 |
-
batch_size, seq_length = input_ids.shape
|
| 640 |
-
elif inputs_embeds is not None:
|
| 641 |
-
batch_size, seq_length, _ = inputs_embeds.shape
|
| 642 |
-
else:
|
| 643 |
-
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
| 644 |
-
|
| 645 |
-
seq_length_with_past = seq_length
|
| 646 |
-
past_key_values_length = 0
|
| 647 |
-
|
| 648 |
-
if past_key_values is not None:
|
| 649 |
-
past_key_values_length = past_key_values[0][0].shape[2]
|
| 650 |
-
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 651 |
-
|
| 652 |
-
position_ids = None
|
| 653 |
-
|
| 654 |
-
if inputs_embeds is None:
|
| 655 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
| 656 |
-
|
| 657 |
-
hidden_states = inputs_embeds
|
| 658 |
-
|
| 659 |
-
if self.gradient_checkpointing and self.training:
|
| 660 |
-
if use_cache:
|
| 661 |
-
logger.warning_once(
|
| 662 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 663 |
-
)
|
| 664 |
-
use_cache = False
|
| 665 |
-
|
| 666 |
-
# decoder layers
|
| 667 |
-
all_hidden_states = () if output_hidden_states else None
|
| 668 |
-
all_self_attns = () if output_attentions else None
|
| 669 |
-
next_decoder_cache = () if use_cache else None
|
| 670 |
-
|
| 671 |
-
for idx, decoder_layer in enumerate(self.layers):
|
| 672 |
-
if output_hidden_states:
|
| 673 |
-
all_hidden_states += (hidden_states,)
|
| 674 |
-
|
| 675 |
-
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
| 676 |
-
|
| 677 |
-
if self.gradient_checkpointing and self.training:
|
| 678 |
-
|
| 679 |
-
def create_custom_forward(module):
|
| 680 |
-
def custom_forward(*inputs):
|
| 681 |
-
# None for past_key_value
|
| 682 |
-
return module(*inputs, output_attentions, None)
|
| 683 |
-
|
| 684 |
-
return custom_forward
|
| 685 |
-
|
| 686 |
-
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 687 |
-
create_custom_forward(decoder_layer),
|
| 688 |
-
hidden_states,
|
| 689 |
-
attention_mask,
|
| 690 |
-
position_ids,
|
| 691 |
-
None,
|
| 692 |
-
is_padded_inputs
|
| 693 |
-
)
|
| 694 |
-
else:
|
| 695 |
-
layer_outputs = decoder_layer(
|
| 696 |
-
hidden_states,
|
| 697 |
-
attention_mask=attention_mask,
|
| 698 |
-
position_ids=position_ids,
|
| 699 |
-
past_key_value=past_key_value,
|
| 700 |
-
output_attentions=output_attentions,
|
| 701 |
-
use_cache=use_cache,
|
| 702 |
-
is_padded_inputs=is_padded_inputs,
|
| 703 |
-
)
|
| 704 |
-
|
| 705 |
-
hidden_states = layer_outputs[0]
|
| 706 |
-
|
| 707 |
-
if use_cache:
|
| 708 |
-
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
| 709 |
-
|
| 710 |
-
if output_attentions:
|
| 711 |
-
all_self_attns += (layer_outputs[1],)
|
| 712 |
-
|
| 713 |
-
hidden_states = self.norm(hidden_states)
|
| 714 |
-
|
| 715 |
-
# add hidden states from the last decoder layer
|
| 716 |
-
if output_hidden_states:
|
| 717 |
-
all_hidden_states += (hidden_states,)
|
| 718 |
-
|
| 719 |
-
next_cache = next_decoder_cache if use_cache else None
|
| 720 |
-
if not return_dict:
|
| 721 |
-
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 722 |
-
return BaseModelOutputWithPast(
|
| 723 |
-
last_hidden_state=hidden_states,
|
| 724 |
-
past_key_values=next_cache,
|
| 725 |
-
hidden_states=all_hidden_states,
|
| 726 |
-
attentions=all_self_attns,
|
| 727 |
-
)
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
class LlamaForCausalLM(LlamaPreTrainedModel):
|
| 731 |
-
_tied_weights_keys = ["lm_head.weight"]
|
| 732 |
-
|
| 733 |
-
def __init__(self, config):
|
| 734 |
-
super().__init__(config)
|
| 735 |
-
self.model = LlamaModel(config)
|
| 736 |
-
self.vocab_size = config.vocab_size
|
| 737 |
-
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 738 |
-
|
| 739 |
-
# Initialize weights and apply final processing
|
| 740 |
-
self.post_init()
|
| 741 |
-
|
| 742 |
-
def get_input_embeddings(self):
|
| 743 |
-
return self.model.embed_tokens
|
| 744 |
-
|
| 745 |
-
def set_input_embeddings(self, value):
|
| 746 |
-
self.model.embed_tokens = value
|
| 747 |
-
|
| 748 |
-
def get_output_embeddings(self):
|
| 749 |
-
return self.lm_head
|
| 750 |
-
|
| 751 |
-
def set_output_embeddings(self, new_embeddings):
|
| 752 |
-
self.lm_head = new_embeddings
|
| 753 |
-
|
| 754 |
-
def set_decoder(self, decoder):
|
| 755 |
-
self.model = decoder
|
| 756 |
-
|
| 757 |
-
def get_decoder(self):
|
| 758 |
-
return self.model
|
| 759 |
-
|
| 760 |
-
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
| 761 |
-
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 762 |
-
def forward(
|
| 763 |
-
self,
|
| 764 |
-
input_ids: torch.LongTensor = None,
|
| 765 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 766 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 767 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 768 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 769 |
-
labels: Optional[torch.LongTensor] = None,
|
| 770 |
-
use_cache: Optional[bool] = None,
|
| 771 |
-
output_attentions: Optional[bool] = None,
|
| 772 |
-
output_hidden_states: Optional[bool] = None,
|
| 773 |
-
return_dict: Optional[bool] = None,
|
| 774 |
-
is_padded_inputs: Optional[bool] = None,
|
| 775 |
-
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 776 |
-
r"""
|
| 777 |
-
Args:
|
| 778 |
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 779 |
-
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 780 |
-
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 781 |
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 782 |
-
|
| 783 |
-
Returns:
|
| 784 |
-
|
| 785 |
-
Example:
|
| 786 |
-
|
| 787 |
-
```python
|
| 788 |
-
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
| 789 |
-
|
| 790 |
-
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
| 791 |
-
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
| 792 |
-
|
| 793 |
-
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 794 |
-
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 795 |
-
|
| 796 |
-
>>> # Generate
|
| 797 |
-
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 798 |
-
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 799 |
-
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 800 |
-
```"""
|
| 801 |
-
|
| 802 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 803 |
-
output_hidden_states = (
|
| 804 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 805 |
-
)
|
| 806 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 807 |
-
|
| 808 |
-
is_padded_inputs = ((attention_mask is not None) and (not attention_mask.all().item()))
|
| 809 |
-
|
| 810 |
-
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 811 |
-
outputs = self.model(
|
| 812 |
-
input_ids=input_ids,
|
| 813 |
-
attention_mask=attention_mask,
|
| 814 |
-
position_ids=position_ids,
|
| 815 |
-
past_key_values=past_key_values,
|
| 816 |
-
inputs_embeds=inputs_embeds,
|
| 817 |
-
use_cache=use_cache,
|
| 818 |
-
output_attentions=output_attentions,
|
| 819 |
-
output_hidden_states=output_hidden_states,
|
| 820 |
-
return_dict=return_dict,
|
| 821 |
-
is_padded_inputs=is_padded_inputs,
|
| 822 |
-
)
|
| 823 |
-
|
| 824 |
-
hidden_states = outputs[0]
|
| 825 |
-
if self.config.pretraining_tp > 1:
|
| 826 |
-
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
| 827 |
-
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
| 828 |
-
logits = torch.cat(logits, dim=-1)
|
| 829 |
-
else:
|
| 830 |
-
logits = self.lm_head(hidden_states)
|
| 831 |
-
logits = logits.float()
|
| 832 |
-
|
| 833 |
-
loss = None
|
| 834 |
-
if labels is not None:
|
| 835 |
-
# Shift so that tokens < n predict n
|
| 836 |
-
shift_logits = logits[..., :-1, :].contiguous()
|
| 837 |
-
shift_labels = labels[..., 1:].contiguous()
|
| 838 |
-
# Flatten the tokens
|
| 839 |
-
loss_fct = CrossEntropyLoss()
|
| 840 |
-
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 841 |
-
shift_labels = shift_labels.view(-1)
|
| 842 |
-
# Enable model parallelism
|
| 843 |
-
shift_labels = shift_labels.to(shift_logits.device)
|
| 844 |
-
loss = loss_fct(shift_logits, shift_labels)
|
| 845 |
-
|
| 846 |
-
if not return_dict:
|
| 847 |
-
output = (logits,) + outputs[1:]
|
| 848 |
-
return (loss,) + output if loss is not None else output
|
| 849 |
-
|
| 850 |
-
return CausalLMOutputWithPast(
|
| 851 |
-
loss=loss,
|
| 852 |
-
logits=logits,
|
| 853 |
-
past_key_values=outputs.past_key_values,
|
| 854 |
-
hidden_states=outputs.hidden_states,
|
| 855 |
-
attentions=outputs.attentions,
|
| 856 |
-
)
|
| 857 |
-
|
| 858 |
-
def prepare_inputs_for_generation(
|
| 859 |
-
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
| 860 |
-
):
|
| 861 |
-
if past_key_values:
|
| 862 |
-
input_ids = input_ids[:, -1:]
|
| 863 |
-
|
| 864 |
-
position_ids = kwargs.get("position_ids", None)
|
| 865 |
-
|
| 866 |
-
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 867 |
-
if inputs_embeds is not None and past_key_values is None:
|
| 868 |
-
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 869 |
-
else:
|
| 870 |
-
model_inputs = {"input_ids": input_ids}
|
| 871 |
-
|
| 872 |
-
model_inputs.update(
|
| 873 |
-
{
|
| 874 |
-
"position_ids": position_ids,
|
| 875 |
-
"past_key_values": past_key_values,
|
| 876 |
-
"use_cache": kwargs.get("use_cache"),
|
| 877 |
-
"attention_mask": attention_mask,
|
| 878 |
-
"is_padded_inputs": ((attention_mask is not None) and (not attention_mask.all().item()))
|
| 879 |
-
}
|
| 880 |
-
)
|
| 881 |
-
return model_inputs
|
| 882 |
-
|
| 883 |
-
@staticmethod
|
| 884 |
-
def _reorder_cache(past_key_values, beam_idx):
|
| 885 |
-
reordered_past = ()
|
| 886 |
-
for layer_past in past_key_values:
|
| 887 |
-
reordered_past += (
|
| 888 |
-
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
| 889 |
-
)
|
| 890 |
-
return reordered_past
|
| 891 |
-
|
| 892 |
-
|
| 893 |
-
@add_start_docstrings(
|
| 894 |
-
"""
|
| 895 |
-
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
| 896 |
-
|
| 897 |
-
[`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 898 |
-
(e.g. GPT-2) do.
|
| 899 |
-
|
| 900 |
-
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 901 |
-
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 902 |
-
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 903 |
-
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 904 |
-
each row of the batch).
|
| 905 |
-
""",
|
| 906 |
-
LLAMA_START_DOCSTRING,
|
| 907 |
-
)
|
| 908 |
-
class LlamaForSequenceClassification(LlamaPreTrainedModel):
|
| 909 |
-
def __init__(self, config):
|
| 910 |
-
super().__init__(config)
|
| 911 |
-
self.num_labels = config.num_labels
|
| 912 |
-
self.model = LlamaModel(config)
|
| 913 |
-
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
| 914 |
-
|
| 915 |
-
# Initialize weights and apply final processing
|
| 916 |
-
self.post_init()
|
| 917 |
-
|
| 918 |
-
def get_input_embeddings(self):
|
| 919 |
-
return self.model.embed_tokens
|
| 920 |
-
|
| 921 |
-
def set_input_embeddings(self, value):
|
| 922 |
-
self.model.embed_tokens = value
|
| 923 |
-
|
| 924 |
-
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
| 925 |
-
def forward(
|
| 926 |
-
self,
|
| 927 |
-
input_ids: torch.LongTensor = None,
|
| 928 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 929 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 930 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 931 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 932 |
-
labels: Optional[torch.LongTensor] = None,
|
| 933 |
-
use_cache: Optional[bool] = None,
|
| 934 |
-
output_attentions: Optional[bool] = None,
|
| 935 |
-
output_hidden_states: Optional[bool] = None,
|
| 936 |
-
return_dict: Optional[bool] = None,
|
| 937 |
-
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 938 |
-
r"""
|
| 939 |
-
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 940 |
-
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 941 |
-
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 942 |
-
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 943 |
-
"""
|
| 944 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 945 |
-
|
| 946 |
-
transformer_outputs = self.model(
|
| 947 |
-
input_ids,
|
| 948 |
-
attention_mask=attention_mask,
|
| 949 |
-
position_ids=position_ids,
|
| 950 |
-
past_key_values=past_key_values,
|
| 951 |
-
inputs_embeds=inputs_embeds,
|
| 952 |
-
use_cache=use_cache,
|
| 953 |
-
output_attentions=output_attentions,
|
| 954 |
-
output_hidden_states=output_hidden_states,
|
| 955 |
-
return_dict=return_dict,
|
| 956 |
-
)
|
| 957 |
-
hidden_states = transformer_outputs[0]
|
| 958 |
-
logits = self.score(hidden_states)
|
| 959 |
-
|
| 960 |
-
if input_ids is not None:
|
| 961 |
-
batch_size = input_ids.shape[0]
|
| 962 |
-
else:
|
| 963 |
-
batch_size = inputs_embeds.shape[0]
|
| 964 |
-
|
| 965 |
-
if self.config.pad_token_id is None and batch_size != 1:
|
| 966 |
-
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
| 967 |
-
if self.config.pad_token_id is None:
|
| 968 |
-
sequence_lengths = -1
|
| 969 |
-
else:
|
| 970 |
-
if input_ids is not None:
|
| 971 |
-
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
| 972 |
-
else:
|
| 973 |
-
sequence_lengths = -1
|
| 974 |
-
|
| 975 |
-
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
| 976 |
-
|
| 977 |
-
loss = None
|
| 978 |
-
if labels is not None:
|
| 979 |
-
labels = labels.to(logits.device)
|
| 980 |
-
if self.config.problem_type is None:
|
| 981 |
-
if self.num_labels == 1:
|
| 982 |
-
self.config.problem_type = "regression"
|
| 983 |
-
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 984 |
-
self.config.problem_type = "single_label_classification"
|
| 985 |
-
else:
|
| 986 |
-
self.config.problem_type = "multi_label_classification"
|
| 987 |
-
|
| 988 |
-
if self.config.problem_type == "regression":
|
| 989 |
-
loss_fct = MSELoss()
|
| 990 |
-
if self.num_labels == 1:
|
| 991 |
-
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 992 |
-
else:
|
| 993 |
-
loss = loss_fct(pooled_logits, labels)
|
| 994 |
-
elif self.config.problem_type == "single_label_classification":
|
| 995 |
-
loss_fct = CrossEntropyLoss()
|
| 996 |
-
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
| 997 |
-
elif self.config.problem_type == "multi_label_classification":
|
| 998 |
-
loss_fct = BCEWithLogitsLoss()
|
| 999 |
-
loss = loss_fct(pooled_logits, labels)
|
| 1000 |
-
if not return_dict:
|
| 1001 |
-
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1002 |
-
return ((loss,) + output) if loss is not None else output
|
| 1003 |
-
|
| 1004 |
-
return SequenceClassifierOutputWithPast(
|
| 1005 |
-
loss=loss,
|
| 1006 |
-
logits=pooled_logits,
|
| 1007 |
-
past_key_values=transformer_outputs.past_key_values,
|
| 1008 |
-
hidden_states=transformer_outputs.hidden_states,
|
| 1009 |
-
attentions=transformer_outputs.attentions,
|
| 1010 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|