| import subprocess | |
| import os | |
| import subprocess | |
| from PIL import Image, ImageDraw | |
| import re | |
| import json | |
| import subprocess | |
| def process_inference_results(results, process_image=False): | |
| """ | |
| Process the inference results by: | |
| 1. Adding bounding boxes on the image based on the coordinates in 'text'. | |
| 2. Extracting and returning the text prompt. | |
| :param results: List of inference results with bounding boxes in 'text'. | |
| :return: (image, text) | |
| """ | |
| processed_images = [] | |
| extracted_texts = [] | |
| for result in results: | |
| image_path = result['image_path'] | |
| img = Image.open(image_path).convert("RGB") | |
| draw = ImageDraw.Draw(img) | |
| bbox_str = re.search(r'\[\[([0-9,\s]+)\]\]', result['text']) | |
| if bbox_str: | |
| bbox = [int(coord) for coord in bbox_str.group(1).split(',')] | |
| x1, y1, x2, y2 = bbox | |
| draw.rectangle([x1, y1, x2, y2], outline="red", width=3) | |
| extracted_texts.append(result['text']) | |
| processed_images.append(img) | |
| if process_image: | |
| return processed_images, extracted_texts | |
| return extracted_texts | |
| def inference_and_run(image_path, prompt, conv_mode="ferret_llama_3", model_path="jadechoghari/Ferret-UI-Llama8b", box=None, process_image=False): | |
| """ | |
| Run the inference and capture the errors for debugging. | |
| """ | |
| data_input = [{ | |
| "id": 0, | |
| "image": os.path.basename(image_path), | |
| "image_h": Image.open(image_path).height, | |
| "image_w": Image.open(image_path).width, | |
| "conversations": [{"from": "human", "value": f"<image>\n{prompt}"}] | |
| }] | |
| if box: | |
| data_input[0]["box_x1y1x2y2"] = [[box]] | |
| with open("eval.json", "w") as json_file: | |
| json.dump(data_input, json_file) | |
| print("eval.json file created successfully.") | |
| cmd = [ | |
| "python", "-m", "model_UI", | |
| "--model_path", model_path, | |
| "--data_path", "eval.json", | |
| "--image_path", ".", | |
| "--answers_file", "eval_output.jsonl", | |
| "--num_beam", "1", | |
| "--max_new_tokens", "1024", | |
| "--conv_mode", conv_mode | |
| ] | |
| if box: | |
| cmd.extend(["--region_format", "box", "--add_region_feature"]) | |
| try: | |
| result = subprocess.run(cmd, check=True, capture_output=True, text=True) | |
| print(f"Subprocess output:\n{result.stdout}") | |
| print(f"Subprocess error (if any):\n{result.stderr}") | |
| print(f"Inference completed. Output written to eval_output.jsonl") | |
| output_folder = 'eval_output.jsonl' | |
| if os.path.exists(output_folder): | |
| json_files = [f for f in os.listdir(output_folder) if f.endswith(".jsonl")] | |
| if json_files: | |
| output_file_path = os.path.join(output_folder, json_files[0]) | |
| with open(output_file_path, "r") as output_file: | |
| results = [json.loads(line) for line in output_file] | |
| return process_inference_results(results, process_image) | |
| else: | |
| print("No output JSONL files found.") | |
| return None, None | |
| else: | |
| print("Output folder not found.") | |
| return None, None | |
| except subprocess.CalledProcessError as e: | |
| print(f"Error occurred during inference:\n{e}") | |
| print(f"Subprocess output:\n{e.output}") | |
| return None, None | |