--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - MLCommons/peoples_speech metrics: - wer model-index: - name: Fine Tune Whisper on People Speech results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Peoples Speech type: MLCommons/peoples_speech args: 'config: English, split: test' metrics: - name: Wer type: wer value: 14.784595300261097 --- # Fine Tune Whisper on People Speech This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Peoples Speech dataset. It achieves the following results on the evaluation set: - Loss: 0.5068 - Wer: 14.7846 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0071 | 2.0 | 100 | 0.5080 | 14.2950 | | 0.006 | 4.0 | 200 | 0.4859 | 14.1645 | | 0.0012 | 6.0 | 300 | 0.4997 | 14.3603 | | 0.0002 | 8.0 | 400 | 0.5017 | 14.4582 | | 0.0005 | 10.0 | 500 | 0.5068 | 14.7846 | ### Framework versions - Transformers 4.52.0 - Pytorch 2.9.0+cu126 - Datasets 4.4.1 - Tokenizers 0.21.4