Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
tags:
|
| 5 |
+
- fact-checking
|
| 6 |
+
- misinformation-detection
|
| 7 |
+
- bert
|
| 8 |
+
- modernbert
|
| 9 |
+
datasets:
|
| 10 |
+
- FELM
|
| 11 |
+
- FEVER
|
| 12 |
+
- HaluEval
|
| 13 |
+
- LIAR
|
| 14 |
+
metrics:
|
| 15 |
+
- accuracy
|
| 16 |
+
- f1
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# ModernBERT Fact-Checking Model
|
| 20 |
+
|
| 21 |
+
## Model Description
|
| 22 |
+
|
| 23 |
+
This is a fine-tuned ModernBERT model for binary fact-checking classification, trained on consolidated datasets from multiple authoritative sources. The model determines whether a given claim is likely to be true (label 1) or false (label 0).
|
| 24 |
+
|
| 25 |
+
**Base Model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base)
|
| 26 |
+
|
| 27 |
+
## Intended Uses
|
| 28 |
+
|
| 29 |
+
### Primary Use
|
| 30 |
+
- Automated fact-checking systems
|
| 31 |
+
- Misinformation detection pipelines
|
| 32 |
+
- Content moderation tools
|
| 33 |
+
|
| 34 |
+
### Out-of-Scope Uses
|
| 35 |
+
- Multilingual fact-checking (English only)
|
| 36 |
+
- Medical/legal claim verification
|
| 37 |
+
- Highly domain-specific claims
|
| 38 |
+
|
| 39 |
+
## Training Data
|
| 40 |
+
|
| 41 |
+
The model was trained on a combination of four datasets:
|
| 42 |
+
|
| 43 |
+
| Dataset | Samples | Domain |
|
| 44 |
+
|---------|---------|--------|
|
| 45 |
+
| FELM | 34,000 | General claims |
|
| 46 |
+
| FEVER | 145,000 | Wikipedia-based claims |
|
| 47 |
+
| HaluEval | 12,000 | QA hallucination detection |
|
| 48 |
+
| LIAR | 12,800 | Political claims |
|
| 49 |
+
|
| 50 |
+
**Total training samples:** ~203,800
|
| 51 |
+
|
| 52 |
+
## Training Procedure
|
| 53 |
+
|
| 54 |
+
### Hyperparameters
|
| 55 |
+
- Learning Rate: 5e-5
|
| 56 |
+
- Batch Size: 32
|
| 57 |
+
- Epochs: 1
|
| 58 |
+
- Max Sequence Length: 512 tokens
|
| 59 |
+
- Optimizer: adamw_torch_fused
|
| 60 |
+
|
| 61 |
+
### Preprocessing
|
| 62 |
+
All datasets were converted to a standardized format:
|
| 63 |
+
```python
|
| 64 |
+
{
|
| 65 |
+
"text": "full claim text",
|
| 66 |
+
"label": 0.0 or 1.0,
|
| 67 |
+
"source": "dataset_name"
|
| 68 |
+
}
|