Files changed (1) hide show
  1. README.md +85 -3
README.md CHANGED
@@ -1,3 +1,85 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ASearcher-Web-QwQ-V2
2
+
3
+ ## Overview
4
+
5
+ **ASearcher-Web-QwQ-V2** is a 32B-scale search agent trained using large-scale reinforcement learning. This model represents an improved version of the ASearcher framework, achieving cutting-edge performance on challenging web search benchmarks through advanced agentic RL training techniques.
6
+
7
+ ## Key Features
8
+
9
+ - πŸ† **Cutting-Edge Performance**: Achieves Avg@4 scores of 58.7, 51.1, and 74.5 on GAIA, xBench-DeepSearch, and Frames benchmarks respectively
10
+ - ⚑ **Fully Asynchronous RL Training**: Enables efficient long-horizon search capabilities with tool calls exceedind 100 rounds
11
+ - πŸ” **Advanced Data Synthesis**: Trained on autonomously generated QA pairs with rigorous multi-stage validation
12
+ - 🌐 **Real Web Search Capabilities**: Designed to interact with live web search tools for up-to-date information retrieval
13
+
14
+ ## Performance Highlights
15
+
16
+ | Benchmark | Avg@4 Score | Pass@4 Score |
17
+ |-----------|------------|-------------|
18
+ | GAIA | 58.7 | 74.7 |
19
+ | xBench-DeepSearch | 51.1 | 75.0 |
20
+ | Frames | 74.5 | 85.5 |
21
+
22
+ **Substantial RL Improvements**: Reinforcement learning training brings significant gains:
23
+ - +15.0 improvement on GAIA
24
+ - +22.4 improvement on xBench-DeepSearch
25
+ - +14.6 improvement on Frames
26
+
27
+ ## Quick Start
28
+
29
+
30
+ ### Evaluation
31
+
32
+ To reproduce the benchmark results:
33
+
34
+ ```bash
35
+ cd evaluation/
36
+ python search_eval_async.py \
37
+ --model_name_or_path inclusionAI/ASearcher-Web-QwQ-V2 \
38
+ --data_names GAIA,xbench-deepsearch,Frames \
39
+ --agent-type asearcher-reasoning \
40
+ --search-client-type async-web-search-access
41
+ ```
42
+
43
+ ## Training Details
44
+
45
+ This model was trained using:
46
+ - **Architecture**: QwQ-32B
47
+ - **Training Method**: Fully asynchronous reinforcement learning
48
+ - **Data**: Synthesized QA pairs with multi-stage validation
49
+ - **Framework**: AReaL
50
+
51
+ ## Applications
52
+
53
+ - Complex web search and information retrieval
54
+ - Multi-step problem solving with tool usage
55
+ - Real-time information gathering and synthesis
56
+ - Long-horizon reasoning tasks
57
+
58
+
59
+ ## Citation
60
+
61
+ If you use this model, please cite:
62
+
63
+ ```bibtex
64
+ @misc{gao2025turnsunlockinglonghorizonagentic,
65
+ title={Beyond Ten Turns: Unlocking Long-Horizon Agentic Search with Large-Scale Asynchronous RL},
66
+ author={Jiaxuan Gao and Wei Fu and Minyang Xie and Shusheng Xu and Chuyi He and Zhiyu Mei and Banghua Zhu and Yi Wu},
67
+ year={2025},
68
+ eprint={2508.07976},
69
+ archivePrefix={arXiv},
70
+ primaryClass={cs.CL},
71
+ url={https://arxiv.org/abs/2508.07976},
72
+ }
73
+ ```
74
+
75
+ ## License
76
+
77
+ ---
78
+ license: apache-2.0
79
+ ---
80
+
81
+
82
+ ## Contact
83
+
84
+ For questions and support, please refer to the [ASearcher GitHub repository](https://github.com/inclusionAI/ASearcher) or open an issue on the project page.
85
+