Updated README.md
Browse files
README.md
CHANGED
|
@@ -1,235 +1,235 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
tags:
|
| 4 |
-
- chemistry
|
| 5 |
-
- foundation models
|
| 6 |
-
- AI4Science
|
| 7 |
-
- materials
|
| 8 |
-
- molecules
|
| 9 |
-
- smiles
|
| 10 |
-
- selfies
|
| 11 |
-
- molecular formula
|
| 12 |
-
- iupac name
|
| 13 |
-
- inchi
|
| 14 |
-
- polymer smiles
|
| 15 |
-
- formulation
|
| 16 |
-
- pytorch
|
| 17 |
-
- bamba
|
| 18 |
-
- transformers
|
| 19 |
-
- mamba2
|
| 20 |
-
---
|
| 21 |
-
|
| 22 |
-
# Molecular String-based Bamba Encoder-Decoder (STR-Bamba)
|
| 23 |
-
|
| 24 |
-
This repository provides PyTorch source code associated with our publication, "STR-Bamba: Multimodal Molecular Textual Representation Encoder-Decoder Foundation Model".
|
| 25 |
-
|
| 26 |
-
**Paper:** [OpenReview Link](https://openreview.net/pdf?id=0uWNuJ1xtz)
|
| 27 |
-
|
| 28 |
-
**GitHub:** [GitHub Link](https://github.com/IBM/materials/tree/main/models/str_bamba)
|
| 29 |
-
|
| 30 |
-
For more information contact: [email protected] or [email protected].
|
| 31 |
-
|
| 32 |
-

|
| 33 |
-
|
| 34 |
-
## Introduction
|
| 35 |
-
|
| 36 |
-
We present a large encoder-decoder chemical foundation model based on the IBM Bamba architecture, a hybrid of Transformers and Mamba-2 layers, designed to support multi-representational molecular string inputs. The model is pre-trained in a BERT-style on 588 million samples, resulting in a corpus of approximately 29 billion molecular tokens. These models serve as a foundation for language chemical research in supporting different complex tasks, including molecular properties prediction, classification, and molecular translation. **Additionally, the STR-Bamba architecture allows for the aggregation of multiple representations in a single text input, as it does not contain any token length limitation, except for hardware limitations.** Our experiments across multiple benchmark datasets demonstrate state-of-the-art performance for various tasks.
|
| 37 |
-
|
| 38 |
-
The STR-Bamba model supports the following **molecular representations**:
|
| 39 |
-
- SMILES
|
| 40 |
-
- SELFIES
|
| 41 |
-
- Molecular Formula
|
| 42 |
-
- InChI
|
| 43 |
-
- IUPAC Name
|
| 44 |
-
- Polymer SMILES in [SPG notation](https://openreview.net/pdf?id=L47GThI95d)
|
| 45 |
-
- Formulations
|
| 46 |
-
|
| 47 |
-
## Table of Contents
|
| 48 |
-
|
| 49 |
-
1. [Getting Started](#getting-started)
|
| 50 |
-
1. [Pretrained Models and Training Logs](#pretrained-models-and-training-logs)
|
| 51 |
-
2. [Replicating Conda Environment](#replicating-conda-environment)
|
| 52 |
-
2. [Pretraining](#pretraining)
|
| 53 |
-
3. [Finetuning](#finetuning)
|
| 54 |
-
4. [Feature Extraction](#feature-extraction)
|
| 55 |
-
5. [Citations](#citations)
|
| 56 |
-
|
| 57 |
-
## Getting Started
|
| 58 |
-
|
| 59 |
-
**This code and environment have been tested on Nvidia V100s and Nvidia A100s**
|
| 60 |
-
|
| 61 |
-
### Pretrained Models and Training Logs
|
| 62 |
-
|
| 63 |
-
We provide checkpoints of the STR-Bamba model pre-trained on a dataset of ~118M small molecules, ~2M polymer structures, and 258 formulations. The pre-trained model shows competitive performance on classification and regression benchmarks across small and polymer molecules, and electrolyte formulations. For
|
| 64 |
-
|
| 65 |
-
Add the STR-Bamba `pre-trained weights.pt` to the `inference/` or `finetune/` directory according to your needs. The directory structure should look like the following:
|
| 66 |
-
|
| 67 |
-
```
|
| 68 |
-
inference/
|
| 69 |
-
βββ str_bamba/
|
| 70 |
-
βββ config/
|
| 71 |
-
βββ checkpoints/
|
| 72 |
-
β βββ STR-Bamba_8.pt
|
| 73 |
-
βββ tokenizer/
|
| 74 |
-
```
|
| 75 |
-
and/or:
|
| 76 |
-
|
| 77 |
-
```
|
| 78 |
-
finetune/
|
| 79 |
-
βββ str_bamba/
|
| 80 |
-
βββ config/
|
| 81 |
-
βββ checkpoints/
|
| 82 |
-
β βββ STR-Bamba_8.pt
|
| 83 |
-
βββ tokenizer/
|
| 84 |
-
```
|
| 85 |
-
|
| 86 |
-
### Replicating Conda Environment
|
| 87 |
-
|
| 88 |
-
Follow these steps to replicate our Conda environment and install the necessary libraries:
|
| 89 |
-
|
| 90 |
-
#### Create and Activate Conda Environment
|
| 91 |
-
```shell
|
| 92 |
-
mamba create -n strbamba python=3.10.13
|
| 93 |
-
mamba activate strbamba
|
| 94 |
-
```
|
| 95 |
-
|
| 96 |
-
#### PyTorch 2.4.0 and CUDA 12.4
|
| 97 |
-
```shell
|
| 98 |
-
pip install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 --index-url https://download.pytorch.org/whl/cu124
|
| 99 |
-
```
|
| 100 |
-
|
| 101 |
-
#### Mamba2 dependencies:
|
| 102 |
-
|
| 103 |
-
Install the following packages in this order and with a **GPU**, because `mamba` depends on `causal-conv1d` to be installed.
|
| 104 |
-
|
| 105 |
-
```shell
|
| 106 |
-
# causal-conv1d
|
| 107 |
-
git clone https://github.com/Dao-AILab/causal-conv1d.git
|
| 108 |
-
cd causal-conv1d && git checkout v1.5.0.post8 && pip install . && cd .. && rm -rf causal-conv1d
|
| 109 |
-
```
|
| 110 |
-
|
| 111 |
-
```shell
|
| 112 |
-
# mamba
|
| 113 |
-
git clone https://github.com/state-spaces/mamba.git
|
| 114 |
-
cd mamba && git checkout v2.2.4 && pip install --no-build-isolation . && cd .. && rm -rf mamba
|
| 115 |
-
```
|
| 116 |
-
|
| 117 |
-
```shell
|
| 118 |
-
# flash-attn
|
| 119 |
-
pip install flash-attn==2.6.1 --no-build-isolation
|
| 120 |
-
```
|
| 121 |
-
|
| 122 |
-
#### Install Packages with Pip
|
| 123 |
-
```shell
|
| 124 |
-
pip install -r requirements.txt
|
| 125 |
-
```
|
| 126 |
-
|
| 127 |
-
#### Troubleshooting
|
| 128 |
-
```shell
|
| 129 |
-
pip install mamba-ssm==2.2.4
|
| 130 |
-
MAX_JOBS=2 pip install flash-attn==2.6.1 --no-build-isolation --verbose
|
| 131 |
-
```
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
## Pretraining
|
| 135 |
-
|
| 136 |
-
For pretraining, we use two strategies: the masked language model method to train the encoder part and a next token prediction strategy to train the decoder in order to refine molecular representation reconstruction and generation conditioned from the encoder.
|
| 137 |
-
|
| 138 |
-
The pretraining code provides examples of data processing and model training on a smaller dataset, requiring a A100 GPU.
|
| 139 |
-
|
| 140 |
-
To pre-train the two stages of the STR-Bamba model, run:
|
| 141 |
-
|
| 142 |
-
```
|
| 143 |
-
bash training/run_model_encoder_training.sh
|
| 144 |
-
```
|
| 145 |
-
or
|
| 146 |
-
```
|
| 147 |
-
bash training/run_model_decoder_training.sh
|
| 148 |
-
```
|
| 149 |
-
|
| 150 |
-
## Finetuning
|
| 151 |
-
|
| 152 |
-
The finetuning datasets and environment can be found in the [finetune](finetune
|
| 153 |
-
|
| 154 |
-
```
|
| 155 |
-
bash finetune/runs/esol/run_finetune_esol.sh
|
| 156 |
-
```
|
| 157 |
-
|
| 158 |
-
Finetuning training/checkpointing resources will be available in directories named `checkpoint_<measure_name>`.
|
| 159 |
-
|
| 160 |
-
## Feature Extraction
|
| 161 |
-
|
| 162 |
-
To load STR-Bamba, you can simply use:
|
| 163 |
-
|
| 164 |
-
```python
|
| 165 |
-
model = load_strbamba('STR-Bamba_8.pt')
|
| 166 |
-
```
|
| 167 |
-
|
| 168 |
-
To encode SMILES, SELFIES, InChI or other supported molecular representations into embeddings, you can use:
|
| 169 |
-
|
| 170 |
-
```python
|
| 171 |
-
with torch.no_grad():
|
| 172 |
-
encoded_embeddings = model.encode(df['SMILES'], return_torch=True)
|
| 173 |
-
```
|
| 174 |
-
For decoder, you can use the following code, so you can generate new molecular representations conditioned from the encoder:
|
| 175 |
-
|
| 176 |
-
```python
|
| 177 |
-
with torch.no_grad():
|
| 178 |
-
# encoder and decoder inputs
|
| 179 |
-
encoder_input = '<smiles>CCO'
|
| 180 |
-
decoder_input = '<smiles>'
|
| 181 |
-
decoder_target = '<smiles>CCO'
|
| 182 |
-
|
| 183 |
-
# tokenization
|
| 184 |
-
encoder_input_ids = model.tokenizer(encoder_input,
|
| 185 |
-
padding=True,
|
| 186 |
-
truncation=True,
|
| 187 |
-
return_tensors='pt')['input_ids'].to(device)
|
| 188 |
-
decoder_input_ids = model.tokenizer(decoder_input,
|
| 189 |
-
padding=True,
|
| 190 |
-
truncation=True,
|
| 191 |
-
return_tensors='pt')['input_ids'][:, :-1].to(device)
|
| 192 |
-
decoder_target_ids = model.tokenizer(decoder_target,
|
| 193 |
-
padding=True,
|
| 194 |
-
truncation=True,
|
| 195 |
-
return_tensors='pt')['input_ids'].to(device)
|
| 196 |
-
|
| 197 |
-
# visualize input texts
|
| 198 |
-
print('Encoder input:', model.tokenizer.batch_decode(encoder_input_ids))
|
| 199 |
-
print('Decoder input:', model.tokenizer.batch_decode(decoder_input_ids))
|
| 200 |
-
print('Decoder target:', model.tokenizer.batch_decode(decoder_target_ids))
|
| 201 |
-
print('Target:', decoder_target_ids)
|
| 202 |
-
|
| 203 |
-
# encoder forward
|
| 204 |
-
encoder_hidden_states = model.encoder(encoder_input_ids).hidden_states
|
| 205 |
-
|
| 206 |
-
# model generation
|
| 207 |
-
output = model.decoder.generate(
|
| 208 |
-
input_ids=decoder_input_ids,
|
| 209 |
-
encoder_hidden_states=encoder_hidden_states,
|
| 210 |
-
max_length=decoder_target_ids.shape[1],
|
| 211 |
-
cg=True,
|
| 212 |
-
return_dict_in_generate=True,
|
| 213 |
-
output_scores=True,
|
| 214 |
-
enable_timing=False,
|
| 215 |
-
temperature=1,
|
| 216 |
-
top_k=1,
|
| 217 |
-
top_p=1.0,
|
| 218 |
-
min_p=0.,
|
| 219 |
-
repetition_penalty=1,
|
| 220 |
-
)
|
| 221 |
-
|
| 222 |
-
# visualize model output
|
| 223 |
-
generated_text = ''.join(
|
| 224 |
-
''.join(
|
| 225 |
-
model.tokenizer.batch_decode(
|
| 226 |
-
output.sequences,
|
| 227 |
-
clean_up_tokenization_spaces=True,
|
| 228 |
-
skip_special_tokens=False
|
| 229 |
-
)
|
| 230 |
-
).split(' ')
|
| 231 |
-
)
|
| 232 |
-
print(generated_text)
|
| 233 |
-
```
|
| 234 |
-
|
| 235 |
-
## Citations
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- chemistry
|
| 5 |
+
- foundation models
|
| 6 |
+
- AI4Science
|
| 7 |
+
- materials
|
| 8 |
+
- molecules
|
| 9 |
+
- smiles
|
| 10 |
+
- selfies
|
| 11 |
+
- molecular formula
|
| 12 |
+
- iupac name
|
| 13 |
+
- inchi
|
| 14 |
+
- polymer smiles
|
| 15 |
+
- formulation
|
| 16 |
+
- pytorch
|
| 17 |
+
- bamba
|
| 18 |
+
- transformers
|
| 19 |
+
- mamba2
|
| 20 |
+
---
|
| 21 |
+
|
| 22 |
+
# Molecular String-based Bamba Encoder-Decoder (STR-Bamba)
|
| 23 |
+
|
| 24 |
+
This repository provides PyTorch source code associated with our publication, "STR-Bamba: Multimodal Molecular Textual Representation Encoder-Decoder Foundation Model".
|
| 25 |
+
|
| 26 |
+
**Paper:** [OpenReview Link](https://openreview.net/pdf?id=0uWNuJ1xtz)
|
| 27 |
+
|
| 28 |
+
**GitHub:** [GitHub Link](https://github.com/IBM/materials/tree/main/models/str_bamba)
|
| 29 |
+
|
| 30 |
+
For more information contact: [email protected] or [email protected].
|
| 31 |
+
|
| 32 |
+

|
| 33 |
+
|
| 34 |
+
## Introduction
|
| 35 |
+
|
| 36 |
+
We present a large encoder-decoder chemical foundation model based on the IBM Bamba architecture, a hybrid of Transformers and Mamba-2 layers, designed to support multi-representational molecular string inputs. The model is pre-trained in a BERT-style on 588 million samples, resulting in a corpus of approximately 29 billion molecular tokens. These models serve as a foundation for language chemical research in supporting different complex tasks, including molecular properties prediction, classification, and molecular translation. **Additionally, the STR-Bamba architecture allows for the aggregation of multiple representations in a single text input, as it does not contain any token length limitation, except for hardware limitations.** Our experiments across multiple benchmark datasets demonstrate state-of-the-art performance for various tasks. Code details are available at: [GitHub Link](https://github.com/IBM/materials/tree/main/models/str_bamba).
|
| 37 |
+
|
| 38 |
+
The STR-Bamba model supports the following **molecular representations**:
|
| 39 |
+
- SMILES
|
| 40 |
+
- SELFIES
|
| 41 |
+
- Molecular Formula
|
| 42 |
+
- InChI
|
| 43 |
+
- IUPAC Name
|
| 44 |
+
- Polymer SMILES in [SPG notation](https://openreview.net/pdf?id=L47GThI95d)
|
| 45 |
+
- Formulations
|
| 46 |
+
|
| 47 |
+
## Table of Contents
|
| 48 |
+
|
| 49 |
+
1. [Getting Started](#getting-started)
|
| 50 |
+
1. [Pretrained Models and Training Logs](#pretrained-models-and-training-logs)
|
| 51 |
+
2. [Replicating Conda Environment](#replicating-conda-environment)
|
| 52 |
+
2. [Pretraining](#pretraining)
|
| 53 |
+
3. [Finetuning](#finetuning)
|
| 54 |
+
4. [Feature Extraction](#feature-extraction)
|
| 55 |
+
5. [Citations](#citations)
|
| 56 |
+
|
| 57 |
+
## Getting Started
|
| 58 |
+
|
| 59 |
+
**This code and environment have been tested on Nvidia V100s and Nvidia A100s**
|
| 60 |
+
|
| 61 |
+
### Pretrained Models and Training Logs
|
| 62 |
+
|
| 63 |
+
We provide checkpoints of the STR-Bamba model pre-trained on a dataset of ~118M small molecules, ~2M polymer structures, and 258 formulations. The pre-trained model shows competitive performance on classification and regression benchmarks across small and polymer molecules, and electrolyte formulations. For code details: [GitHub Link](https://github.com/IBM/materials/tree/main/models/str_bamba)
|
| 64 |
+
|
| 65 |
+
Add the STR-Bamba `pre-trained weights.pt` to the `inference/` or `finetune/` directory according to your needs. The directory structure should look like the following:
|
| 66 |
+
|
| 67 |
+
```
|
| 68 |
+
inference/
|
| 69 |
+
βββ str_bamba/
|
| 70 |
+
βββ config/
|
| 71 |
+
βββ checkpoints/
|
| 72 |
+
β βββ STR-Bamba_8.pt
|
| 73 |
+
βββ tokenizer/
|
| 74 |
+
```
|
| 75 |
+
and/or:
|
| 76 |
+
|
| 77 |
+
```
|
| 78 |
+
finetune/
|
| 79 |
+
βββ str_bamba/
|
| 80 |
+
βββ config/
|
| 81 |
+
βββ checkpoints/
|
| 82 |
+
β βββ STR-Bamba_8.pt
|
| 83 |
+
βββ tokenizer/
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
### Replicating Conda Environment
|
| 87 |
+
|
| 88 |
+
Follow these steps to replicate our Conda environment and install the necessary libraries:
|
| 89 |
+
|
| 90 |
+
#### Create and Activate Conda Environment
|
| 91 |
+
```shell
|
| 92 |
+
mamba create -n strbamba python=3.10.13
|
| 93 |
+
mamba activate strbamba
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
#### PyTorch 2.4.0 and CUDA 12.4
|
| 97 |
+
```shell
|
| 98 |
+
pip install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 --index-url https://download.pytorch.org/whl/cu124
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
#### Mamba2 dependencies:
|
| 102 |
+
|
| 103 |
+
Install the following packages in this order and with a **GPU**, because `mamba` depends on `causal-conv1d` to be installed.
|
| 104 |
+
|
| 105 |
+
```shell
|
| 106 |
+
# causal-conv1d
|
| 107 |
+
git clone https://github.com/Dao-AILab/causal-conv1d.git
|
| 108 |
+
cd causal-conv1d && git checkout v1.5.0.post8 && pip install . && cd .. && rm -rf causal-conv1d
|
| 109 |
+
```
|
| 110 |
+
|
| 111 |
+
```shell
|
| 112 |
+
# mamba
|
| 113 |
+
git clone https://github.com/state-spaces/mamba.git
|
| 114 |
+
cd mamba && git checkout v2.2.4 && pip install --no-build-isolation . && cd .. && rm -rf mamba
|
| 115 |
+
```
|
| 116 |
+
|
| 117 |
+
```shell
|
| 118 |
+
# flash-attn
|
| 119 |
+
pip install flash-attn==2.6.1 --no-build-isolation
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
#### Install Packages with Pip
|
| 123 |
+
```shell
|
| 124 |
+
pip install -r requirements.txt
|
| 125 |
+
```
|
| 126 |
+
|
| 127 |
+
#### Troubleshooting
|
| 128 |
+
```shell
|
| 129 |
+
pip install mamba-ssm==2.2.4
|
| 130 |
+
MAX_JOBS=2 pip install flash-attn==2.6.1 --no-build-isolation --verbose
|
| 131 |
+
```
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
## Pretraining
|
| 135 |
+
|
| 136 |
+
For pretraining, we use two strategies: the masked language model method to train the encoder part and a next token prediction strategy to train the decoder in order to refine molecular representation reconstruction and generation conditioned from the encoder.
|
| 137 |
+
|
| 138 |
+
The pretraining code provides examples of data processing and model training on a smaller dataset, requiring a A100 GPU.
|
| 139 |
+
|
| 140 |
+
To pre-train the two stages of the STR-Bamba model, run:
|
| 141 |
+
|
| 142 |
+
```
|
| 143 |
+
bash training/run_model_encoder_training.sh
|
| 144 |
+
```
|
| 145 |
+
or
|
| 146 |
+
```
|
| 147 |
+
bash training/run_model_decoder_training.sh
|
| 148 |
+
```
|
| 149 |
+
|
| 150 |
+
## Finetuning
|
| 151 |
+
|
| 152 |
+
The finetuning datasets and environment can be found in the [finetune](https://github.com/IBM/materials/tree/main/models/str_bamba/finetune) directory. After setting up the environment, you can run a finetuning task with:
|
| 153 |
+
|
| 154 |
+
```
|
| 155 |
+
bash finetune/runs/esol/run_finetune_esol.sh
|
| 156 |
+
```
|
| 157 |
+
|
| 158 |
+
Finetuning training/checkpointing resources will be available in directories named `checkpoint_<measure_name>`.
|
| 159 |
+
|
| 160 |
+
## Feature Extraction
|
| 161 |
+
|
| 162 |
+
To load STR-Bamba, you can simply use:
|
| 163 |
+
|
| 164 |
+
```python
|
| 165 |
+
model = load_strbamba('STR-Bamba_8.pt')
|
| 166 |
+
```
|
| 167 |
+
|
| 168 |
+
To encode SMILES, SELFIES, InChI or other supported molecular representations into embeddings, you can use:
|
| 169 |
+
|
| 170 |
+
```python
|
| 171 |
+
with torch.no_grad():
|
| 172 |
+
encoded_embeddings = model.encode(df['SMILES'], return_torch=True)
|
| 173 |
+
```
|
| 174 |
+
For decoder, you can use the following code, so you can generate new molecular representations conditioned from the encoder:
|
| 175 |
+
|
| 176 |
+
```python
|
| 177 |
+
with torch.no_grad():
|
| 178 |
+
# encoder and decoder inputs
|
| 179 |
+
encoder_input = '<smiles>CCO'
|
| 180 |
+
decoder_input = '<smiles>'
|
| 181 |
+
decoder_target = '<smiles>CCO'
|
| 182 |
+
|
| 183 |
+
# tokenization
|
| 184 |
+
encoder_input_ids = model.tokenizer(encoder_input,
|
| 185 |
+
padding=True,
|
| 186 |
+
truncation=True,
|
| 187 |
+
return_tensors='pt')['input_ids'].to(device)
|
| 188 |
+
decoder_input_ids = model.tokenizer(decoder_input,
|
| 189 |
+
padding=True,
|
| 190 |
+
truncation=True,
|
| 191 |
+
return_tensors='pt')['input_ids'][:, :-1].to(device)
|
| 192 |
+
decoder_target_ids = model.tokenizer(decoder_target,
|
| 193 |
+
padding=True,
|
| 194 |
+
truncation=True,
|
| 195 |
+
return_tensors='pt')['input_ids'].to(device)
|
| 196 |
+
|
| 197 |
+
# visualize input texts
|
| 198 |
+
print('Encoder input:', model.tokenizer.batch_decode(encoder_input_ids))
|
| 199 |
+
print('Decoder input:', model.tokenizer.batch_decode(decoder_input_ids))
|
| 200 |
+
print('Decoder target:', model.tokenizer.batch_decode(decoder_target_ids))
|
| 201 |
+
print('Target:', decoder_target_ids)
|
| 202 |
+
|
| 203 |
+
# encoder forward
|
| 204 |
+
encoder_hidden_states = model.encoder(encoder_input_ids).hidden_states
|
| 205 |
+
|
| 206 |
+
# model generation
|
| 207 |
+
output = model.decoder.generate(
|
| 208 |
+
input_ids=decoder_input_ids,
|
| 209 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 210 |
+
max_length=decoder_target_ids.shape[1],
|
| 211 |
+
cg=True,
|
| 212 |
+
return_dict_in_generate=True,
|
| 213 |
+
output_scores=True,
|
| 214 |
+
enable_timing=False,
|
| 215 |
+
temperature=1,
|
| 216 |
+
top_k=1,
|
| 217 |
+
top_p=1.0,
|
| 218 |
+
min_p=0.,
|
| 219 |
+
repetition_penalty=1,
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
# visualize model output
|
| 223 |
+
generated_text = ''.join(
|
| 224 |
+
''.join(
|
| 225 |
+
model.tokenizer.batch_decode(
|
| 226 |
+
output.sequences,
|
| 227 |
+
clean_up_tokenization_spaces=True,
|
| 228 |
+
skip_special_tokens=False
|
| 229 |
+
)
|
| 230 |
+
).split(' ')
|
| 231 |
+
)
|
| 232 |
+
print(generated_text)
|
| 233 |
+
```
|
| 234 |
+
|
| 235 |
+
## Citations
|