Update README.md
Browse files
README.md
CHANGED
|
@@ -110,7 +110,7 @@ def get_probablities(logprobs):
|
|
| 110 |
|
| 111 |
return probabilities
|
| 112 |
|
| 113 |
-
model_path = "granite-guardian-3.1-2b"
|
| 114 |
|
| 115 |
model = AutoModelForCausalLM.from_pretrained(
|
| 116 |
model_path,
|
|
@@ -186,7 +186,66 @@ with torch.no_grad():
|
|
| 186 |
|
| 187 |
label, prob_of_risk = parse_output(output, input_len)
|
| 188 |
print(f"# risk detected? : {label}") # Yes
|
| 189 |
-
print(f"# probability of risk: {prob_of_risk:.3f}") # 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
```
|
| 191 |
|
| 192 |
### Prompt Template
|
|
|
|
| 110 |
|
| 111 |
return probabilities
|
| 112 |
|
| 113 |
+
model_path = "ibm-granite/granite-guardian-3.1-2b"
|
| 114 |
|
| 115 |
model = AutoModelForCausalLM.from_pretrained(
|
| 116 |
model_path,
|
|
|
|
| 186 |
|
| 187 |
label, prob_of_risk = parse_output(output, input_len)
|
| 188 |
print(f"# risk detected? : {label}") # Yes
|
| 189 |
+
print(f"# probability of risk: {prob_of_risk:.3f}") # 0.997
|
| 190 |
+
|
| 191 |
+
# Usage 3: Example for hallucination risk in function call (risk_name=function_call passed through guardian_config)
|
| 192 |
+
|
| 193 |
+
tools = [
|
| 194 |
+
{
|
| 195 |
+
"name": "comment_list",
|
| 196 |
+
"description": "Fetches a list of comments for a specified IBM video using the given API.",
|
| 197 |
+
"parameters": {
|
| 198 |
+
"aweme_id": {
|
| 199 |
+
"description": "The ID of the IBM video.",
|
| 200 |
+
"type": "int",
|
| 201 |
+
"default": "7178094165614464282"
|
| 202 |
+
},
|
| 203 |
+
"cursor": {
|
| 204 |
+
"description": "The cursor for pagination to get the next page of comments. Defaults to 0.",
|
| 205 |
+
"type": "int, optional",
|
| 206 |
+
"default": "0"
|
| 207 |
+
},
|
| 208 |
+
"count": {
|
| 209 |
+
"description": "The number of comments to fetch. Maximum is 30. Defaults to 20.",
|
| 210 |
+
"type": "int, optional",
|
| 211 |
+
"default": "20"
|
| 212 |
+
}
|
| 213 |
+
}
|
| 214 |
+
}
|
| 215 |
+
]
|
| 216 |
+
user_text = "Fetch the first 15 comments for the IBM video with ID 456789123."
|
| 217 |
+
response_text = [
|
| 218 |
+
{
|
| 219 |
+
"name": "comment_list",
|
| 220 |
+
"arguments": {
|
| 221 |
+
"video_id": 456789123,
|
| 222 |
+
"count": 15
|
| 223 |
+
}
|
| 224 |
+
}
|
| 225 |
+
]
|
| 226 |
+
|
| 227 |
+
messages = [{"role": "tools", "content": tools}, {"role": "user", "content": user_text}, {"role": "assistant", "content": response_text}]
|
| 228 |
+
guardian_config = {"risk_name": "function_call"}
|
| 229 |
+
input_ids = tokenizer.apply_chat_template(
|
| 230 |
+
messages, guardian_config = guardian_config, add_generation_prompt=True, return_tensors="pt"
|
| 231 |
+
).to(model.device)
|
| 232 |
+
input_len = input_ids.shape[1]
|
| 233 |
+
|
| 234 |
+
model.eval()
|
| 235 |
+
|
| 236 |
+
with torch.no_grad():
|
| 237 |
+
output = model.generate(
|
| 238 |
+
input_ids,
|
| 239 |
+
do_sample=False,
|
| 240 |
+
max_new_tokens=20,
|
| 241 |
+
return_dict_in_generate=True,
|
| 242 |
+
output_scores=True,
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
label, prob_of_risk = parse_output(output, input_len)
|
| 246 |
+
print(f"# risk detected? : {label}") # Yes
|
| 247 |
+
print(f"# probability of risk: {prob_of_risk:.3f}") # 0.679
|
| 248 |
+
|
| 249 |
```
|
| 250 |
|
| 251 |
### Prompt Template
|