DiffusionVL-Qwen2.5VL-7B / modeling_diffusionvl_qwen2_5_vl.py
xiazhi's picture
Upload folder using huggingface_hub
b8d31f6 verified
# coding=utf-8
# Copyright 2025 The HustVL Team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on Qwen2.5-VL, which is derived from EleutherAI's GPT-NeoX library
# and the GPT-NeoX and OPT implementations. It has been modified to create DiffusionVL.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DiffusionVL model implementation."""
import math
from dataclasses import dataclass
from typing import Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedModel
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, ModelOutput
from transformers.utils import logging
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
from transformers.modeling_layers import GradientCheckpointingLayer
from .configuration_diffusionvl_qwen2_5_vl import DiffusionVL_Qwen2_5_VL_Config, DiffusionVL_Qwen2_5_VL_VisionConfig
IMAGE_TOKEN_INDEX = -200
def rotate_half(x: torch.Tensor) -> torch.Tensor:
"""
Rotates half the hidden dims of the input for rotary position embedding.
Args:
x: Input tensor of shape (..., head_dim).
Returns:
Rotated tensor of the same shape.
"""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb_vision(
q: torch.Tensor,
k: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary position embedding for vision encoder.
Args:
q: Query tensor.
k: Key tensor.
cos: Cosine part of rotary embedding.
sin: Sine part of rotary embedding.
Returns:
Tuple of (rotated_q, rotated_k).
"""
orig_q_dtype = q.dtype
orig_k_dtype = k.dtype
q, k = q.float(), k.float()
cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float()
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed.to(orig_q_dtype), k_embed.to(orig_k_dtype)
def apply_multimodal_rotary_pos_emb(
q: torch.Tensor,
k: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
mrope_section: List[int],
unsqueeze_dim: int = 1,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply multimodal rotary position embedding (M-RoPE) for 3D position encoding.
Args:
q: Query tensor of shape (batch, heads, seq_len, head_dim).
k: Key tensor of shape (batch, heads, seq_len, head_dim).
cos: Cosine tensor of shape (3, batch, seq_len, head_dim).
sin: Sine tensor of shape (3, batch, seq_len, head_dim).
mrope_section: List of 3 ints defining section sizes [temporal, height, width].
For example, [16, 24, 24] for head_dim=128.
unsqueeze_dim: Dimension to unsqueeze for broadcasting.
Returns:
Tuple of (rotated_q, rotated_k) with M-RoPE applied.
"""
# mrope_section is like [16, 24, 24] for head_dim=128
# Multiply by 2 because head_dim is full (not half like in standard RoPE)
mrope_section = mrope_section * 2 # [16, 24, 24] -> [32, 48, 48]
# Split cos/sin along head_dim, then select appropriate dimension (0, 1, 2) for each section
# cos/sin shape: (3, batch, seq_len, head_dim)
cos = torch.cat(
[m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1
).unsqueeze(unsqueeze_dim)
sin = torch.cat(
[m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1
).unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class DiffusionVL_Qwen2_5_VL_RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
"""Eager attention implementation."""
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class DiffusionVL_Qwen2_5_VL_VisionMLP(nn.Module):
def __init__(self, config, bias: bool = False):
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=bias)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=bias)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=bias)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_state):
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
class DiffusionVL_Qwen2_5_VL_VisionPatchEmbed(nn.Module):
def __init__(self, patch_size=14, temporal_patch_size=2, in_channels=3, embed_dim=1152):
super().__init__()
self.patch_size = patch_size
self.temporal_patch_size = temporal_patch_size
self.in_channels = in_channels
self.embed_dim = embed_dim
kernel_size = [temporal_patch_size, patch_size, patch_size]
self.proj = nn.Conv3d(in_channels, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
target_dtype = self.proj.weight.dtype
hidden_states = hidden_states.view(
-1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size
)
hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim)
return hidden_states
class DiffusionVL_Qwen2_5_VL_VisionRotaryEmbedding(nn.Module):
inv_freq: torch.Tensor
def __init__(self, dim: int, theta: float = 10000.0):
super().__init__()
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
def forward(self, seqlen: int) -> torch.Tensor:
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
freqs = torch.outer(seq, self.inv_freq)
return freqs
class DiffusionVL_Qwen2_5_VL_VisionPatchMerger(nn.Module):
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2):
super().__init__()
self.hidden_size = context_dim * (spatial_merge_size ** 2)
self.ln_q = DiffusionVL_Qwen2_5_VL_RMSNorm(context_dim, eps=1e-6)
self.mlp = nn.Sequential(
nn.Linear(self.hidden_size, self.hidden_size),
nn.GELU(),
nn.Linear(self.hidden_size, dim),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.mlp(self.ln_q(x).view(-1, self.hidden_size))
return x
class DiffusionVL_Qwen2_5_VL_VisionAttention(nn.Module):
def __init__(self, config: DiffusionVL_Qwen2_5_VL_VisionConfig) -> None:
super().__init__()
self.dim = config.hidden_size
self.num_heads = config.num_heads
self.head_dim = self.dim // self.num_heads
self.num_key_value_groups = 1 # needed for eager attention
self.qkv = nn.Linear(self.dim, self.dim * 3, bias=True)
self.proj = nn.Linear(self.dim, self.dim)
self.scaling = self.head_dim**-0.5
self.config = config
self.attention_dropout = 0.0
self.is_causal = False
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
rotary_pos_emb: Optional[torch.Tensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> torch.Tensor:
seq_length = hidden_states.shape[0]
query_states, key_states, value_states = (
self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb_vision(query_states, key_states, cos, sin)
query_states = query_states.transpose(0, 1).unsqueeze(0)
key_states = key_states.transpose(0, 1).unsqueeze(0)
value_states = value_states.transpose(0, 1).unsqueeze(0)
attention_interface: Callable = eager_attention_forward
if getattr(self.config, "_attn_implementation", "eager") != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
if getattr(self.config, "_attn_implementation", "eager") == "flash_attention_2":
# Flash Attention 2: Use cu_seqlens for variable length attention
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max()
attn_output, _ = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask=None,
scaling=self.scaling,
dropout=0.0 if not self.training else self.attention_dropout,
cu_seq_lens_q=cu_seqlens,
cu_seq_lens_k=cu_seqlens,
max_length_q=max_seqlen,
max_length_k=max_seqlen,
is_causal=False,
**kwargs,
)
else:
# Other implementations: Process each chunk separately
lengths = cu_seqlens[1:] - cu_seqlens[:-1]
splits = [
torch.split(tensor, lengths.tolist(), dim=2) for tensor in (query_states, key_states, value_states)
]
attn_outputs = [
attention_interface(
self,
q,
k,
v,
attention_mask=None,
scaling=self.scaling,
dropout=0.0 if not self.training else self.attention_dropout,
is_causal=False,
**kwargs,
)[0]
for q, k, v in zip(*splits)
]
attn_output = torch.cat(attn_outputs, dim=1)
attn_output = attn_output.reshape(seq_length, -1).contiguous()
attn_output = self.proj(attn_output)
return attn_output
class DiffusionVL_Qwen2_5_VL_VisionBlock(GradientCheckpointingLayer):
def __init__(self, config, attn_implementation: str = "sdpa") -> None:
super().__init__()
self.norm1 = DiffusionVL_Qwen2_5_VL_RMSNorm(config.hidden_size, eps=1e-6)
self.norm2 = DiffusionVL_Qwen2_5_VL_RMSNorm(config.hidden_size, eps=1e-6)
self.attn = DiffusionVL_Qwen2_5_VL_VisionAttention(config=config)
self.mlp = DiffusionVL_Qwen2_5_VL_VisionMLP(config, bias=True)
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
rotary_pos_emb: Optional[torch.Tensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> torch.Tensor:
hidden_states = hidden_states + self.attn(
self.norm1(hidden_states),
cu_seqlens=cu_seqlens,
rotary_pos_emb=rotary_pos_emb,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
return hidden_states
class DiffusionVL_Qwen2_5_VL_VisionPreTrainedModel(PreTrainedModel):
config_class = DiffusionVL_Qwen2_5_VL_VisionConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["DiffusionVL_Qwen2_5_VL_VisionBlock"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_attention_backend = True
class DiffusionVL_Qwen2_5_VL_VisionTransformer(DiffusionVL_Qwen2_5_VL_VisionPreTrainedModel):
config_class = DiffusionVL_Qwen2_5_VL_VisionConfig
_no_split_modules = ["DiffusionVL_Qwen2_5_VL_VisionBlock"]
def __init__(self, config: DiffusionVL_Qwen2_5_VL_VisionConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.spatial_merge_size = config.spatial_merge_size
self.patch_size = config.patch_size
self.fullatt_block_indexes = config.fullatt_block_indexes
self.window_size = config.window_size
self.spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size
self.patch_embed = DiffusionVL_Qwen2_5_VL_VisionPatchEmbed(
patch_size=config.patch_size,
temporal_patch_size=config.temporal_patch_size,
in_channels=config.in_channels,
embed_dim=config.hidden_size,
)
head_dim = config.hidden_size // config.num_heads
self.rotary_pos_emb = DiffusionVL_Qwen2_5_VL_VisionRotaryEmbedding(head_dim // 2)
self.blocks = nn.ModuleList([DiffusionVL_Qwen2_5_VL_VisionBlock(config) for _ in range(config.depth)])
self.gradient_checkpointing = False
def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor:
pos_ids = []
for t, h, w in grid_thw:
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
hpos_ids = hpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
hpos_ids = hpos_ids.permute(0, 2, 1, 3).flatten()
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
wpos_ids = wpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
wpos_ids = wpos_ids.permute(0, 2, 1, 3).flatten()
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = grid_thw[:, 1:].max()
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
return rotary_pos_emb
def get_window_index(self, grid_thw: torch.Tensor):
window_index: list = []
cu_window_seqlens: list = [0]
window_index_id = 0
vit_merger_window_size = self.window_size // self.spatial_merge_size // self.patch_size
for grid_t, grid_h, grid_w in grid_thw:
llm_grid_h = grid_h // self.spatial_merge_size
llm_grid_w = grid_w // self.spatial_merge_size
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(grid_t, llm_grid_h, llm_grid_w)
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100)
index_padded = index_padded.reshape(
grid_t,
num_windows_h,
vit_merger_window_size,
num_windows_w,
vit_merger_window_size,
)
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
grid_t,
num_windows_h * num_windows_w,
vit_merger_window_size,
vit_merger_window_size,
)
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
index_padded = index_padded.reshape(-1)
index_new = index_padded[index_padded != -100]
window_index.append(index_new + window_index_id)
cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_unit + cu_window_seqlens[-1]
cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
window_index = torch.cat(window_index, dim=0)
return window_index, cu_window_seqlens
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, **kwargs):
hidden_states = self.patch_embed(hidden_states)
rotary_pos_emb = self.rot_pos_emb(grid_thw)
window_index, cu_window_seqlens = self.get_window_index(grid_thw)
cu_window_seqlens = torch.tensor(
cu_window_seqlens,
device=hidden_states.device,
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
)
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
seq_len, _ = hidden_states.size()
hidden_states = hidden_states.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
hidden_states = hidden_states[window_index, :, :]
hidden_states = hidden_states.reshape(seq_len, -1)
rotary_pos_emb = rotary_pos_emb.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
rotary_pos_emb = rotary_pos_emb[window_index, :, :]
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
position_embeddings = (emb.cos(), emb.sin())
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
dim=0,
# Select dtype based on the following factors:
# - FA2 requires that cu_seqlens_q must have dtype int32
# - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
# See https://github.com/huggingface/transformers/pull/34852 for more information
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
)
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
for layer_num, blk in enumerate(self.blocks):
if layer_num in self.fullatt_block_indexes:
cu_seqlens_now = cu_seqlens
else:
cu_seqlens_now = cu_window_seqlens
hidden_states = blk(
hidden_states,
cu_seqlens=cu_seqlens_now,
position_embeddings=position_embeddings,
**kwargs,
)
# Return hidden_states AND window_index for MMProjector to apply merger and reverse shuffle
return hidden_states, window_index
class DiffusionVL_Qwen2_5_VL_VisionTower(nn.Module):
def __init__(self, config: DiffusionVL_Qwen2_5_VL_VisionConfig):
super().__init__()
self.vision_tower = DiffusionVL_Qwen2_5_VL_VisionTransformer(config)
self.spatial_merge_size = config.spatial_merge_size
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor = None):
"""Returns (hidden_states, window_index) tuple for MMProjector."""
return self.vision_tower(hidden_states, grid_thw)
class DiffusionVL_Qwen2_5_VL_MMProjector(nn.Module):
def __init__(self, config: DiffusionVL_Qwen2_5_VL_VisionConfig):
super().__init__()
self.merger = DiffusionVL_Qwen2_5_VL_VisionPatchMerger(
dim=config.out_hidden_size,
context_dim=config.hidden_size,
spatial_merge_size=config.spatial_merge_size,
)
def forward(self, features_tuple):
"""Forward pass with merger and window index reversal."""
if isinstance(features_tuple, tuple):
hidden_states, window_index = features_tuple
# Apply merger
projected_features = self.merger(hidden_states)
# Reverse the window shuffle to restore original spatial order
reverse_indices = torch.argsort(window_index)
final_features = projected_features[reverse_indices, :]
return final_features
else:
# Fallback for simple tensor input
return self.merger(features_tuple)
class DiffusionVL_Qwen2_5_VL_RotaryEmbedding(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
dim = config.hidden_size // config.num_attention_heads
inv_freq = 1.0 / (config.rope_theta ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
def forward(self, x, position_ids):
"""
Args:
x: Input tensor for dtype reference
position_ids: Position IDs with shape (3, batch_size, seq_length) for M-RoPE
or (batch_size, seq_length) for standard RoPE (will be converted to 3D)
Returns:
cos, sin: Tensors of shape (3, batch, seq_len, head_dim) for M-RoPE
"""
# Always convert 2D position_ids to 3D for M-RoPE
if position_ids.ndim == 2:
# (batch, seq) -> (3, batch, seq)
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
# Now position_ids should be 3D: (3, batch_size, seq_length)
if position_ids.ndim == 3 and position_ids.shape[0] == 3:
# M-RoPE: position_ids shape is (3, batch_size, seq_length)
# Expand inv_freq to (3, batch_size, head_dim//2, 1)
inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(
3, position_ids.shape[1], -1, 1
)
# position_ids_expanded shape: (3, batch_size, 1, seq_length)
position_ids_expanded = position_ids[:, :, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
# freqs shape: (3, batch_size, seq_length, head_dim//2)
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3)
# emb shape: (3, batch_size, seq_length, head_dim)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
else:
# Standard 1D RoPE (fallback)
inv_freq_expanded = self.inv_freq[None, :, None].expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
freqs = (inv_freq_expanded @ position_ids_expanded).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
return cos.to(x.dtype), sin.to(x.dtype)
class DiffusionVL_Qwen2_5_VL_MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = nn.SiLU()
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class DiffusionVL_Qwen2_5_VL_Attention(nn.Module):
"""Non-causal attention for diffusion-based generation with KV-cache support."""
def __init__(self, config, layer_idx):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.scaling = self.head_dim ** -0.5
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
# Non-causal for diffusion
self.is_causal = False
def forward(
self,
hidden_states,
attention_mask=None,
position_ids=None,
past_key_values=None,
output_attentions=False,
use_cache=False,
cache_position=None,
position_embeddings=None,
store_kv=False,
**kwargs,
):
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if position_embeddings is not None:
cos, sin = position_embeddings
query_states, key_states = apply_multimodal_rotary_pos_emb(
query_states, key_states, cos, sin,
self.config.rope_scaling.get("mrope_section", [16, 24, 24])
)
# KV cache handling with store_kv support
if past_key_values is not None and use_cache:
cache_kwargs = {"cache_position": cache_position}
if store_kv:
# Store current KV to cache (for prefill or final step)
key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
else:
# Use cached KV but don't update (for diffusion steps within a block)
cached_key = past_key_values.key_cache[self.layer_idx] if self.layer_idx < len(past_key_values.key_cache) else None
cached_value = past_key_values.value_cache[self.layer_idx] if self.layer_idx < len(past_key_values.value_cache) else None
if cached_key is not None and cached_value is not None:
key_states = torch.cat([cached_key, key_states], dim=2)
value_states = torch.cat([cached_value, value_states], dim=2)
# Repeat KV for GQA
key_states = key_states.repeat_interleave(self.num_key_value_groups, dim=1)
value_states = value_states.repeat_interleave(self.num_key_value_groups, dim=1)
# Handle dict-format attention_mask (for BD3LM compatibility)
if attention_mask is not None:
if isinstance(attention_mask, dict):
# Use full_attention mask for all layers (simplified)
attn_mask = attention_mask.get("full_attention", None)
else:
attn_mask = attention_mask
else:
attn_mask = None
if attn_mask is not None:
attn_output = F.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attn_mask,
dropout_p=0.0,
is_causal=False,
scale=self.scaling,
)
else:
attn_output = F.scaled_dot_product_attention(
query_states,
key_states,
value_states,
dropout_p=0.0,
is_causal=False,
scale=self.scaling,
)
attn_output = attn_output.transpose(1, 2).reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, None
class DiffusionVL_Qwen2_5_VL_DecoderLayer(nn.Module):
def __init__(self, config, layer_idx):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = DiffusionVL_Qwen2_5_VL_Attention(config, layer_idx)
self.mlp = DiffusionVL_Qwen2_5_VL_MLP(config)
self.input_layernorm = DiffusionVL_Qwen2_5_VL_RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = DiffusionVL_Qwen2_5_VL_RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states,
attention_mask=None,
position_ids=None,
past_key_values=None,
output_attentions=False,
use_cache=False,
cache_position=None,
position_embeddings=None,
store_kv=False,
**kwargs,
):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
store_kv=store_kv,
**kwargs,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states, attn_weights
class DiffusionVL_Qwen2_5_VL_PreTrainedModel(PreTrainedModel):
config_class = DiffusionVL_Qwen2_5_VL_Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["DiffusionVL_Qwen2_5_VL_DecoderLayer", "DiffusionVL_Qwen2_5_VL_VisionBlock"]
def _init_weights(self, module: nn.Module) -> None:
"""Initialize the weights."""
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
class DiffusionVL_Qwen2_5_VL_Model(DiffusionVL_Qwen2_5_VL_PreTrainedModel):
def __init__(self, config: DiffusionVL_Qwen2_5_VL_Config):
super().__init__(config)
self.config = config
# Vision components (matching weight keys)
self.vision_tower = DiffusionVL_Qwen2_5_VL_VisionTower(config.vision_config)
self.mm_projector = DiffusionVL_Qwen2_5_VL_MMProjector(config.vision_config)
# Text components
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList([
DiffusionVL_Qwen2_5_VL_DecoderLayer(config, layer_idx)
for layer_idx in range(config.num_hidden_layers)
])
self.norm = DiffusionVL_Qwen2_5_VL_RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = DiffusionVL_Qwen2_5_VL_RotaryEmbedding(config)
# BD3LM block size
self.bd3lm_block_size = config.bd3lm_block_size
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: Optional[torch.LongTensor] = None):
"""
Encodes images into continuous embeddings through vision tower and mm_projector.
Args:
pixel_values: Image tensor
image_grid_thw: Grid dimensions (temporal, height, width) for each image
Returns:
Image embeddings ready to be merged with text embeddings
"""
pixel_values = pixel_values.to(dtype=self.vision_tower.vision_tower.patch_embed.proj.weight.dtype)
hidden_states = self.vision_tower(pixel_values, image_grid_thw)
image_embeds = self.mm_projector(hidden_states)
return image_embeds
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
cache_position=None,
store_kv=False,
pixel_values=None,
image_grid_thw=None,
**kwargs,
):
"""Forward pass with optional vision input processing."""
output_attentions = output_attentions or False
output_hidden_states = output_hidden_states or False
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else True
IMAGE_TOKEN_INDEX = -200
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if pixel_values is not None and image_grid_thw is not None:
# Get image features
image_features = self.get_image_features(pixel_values, image_grid_thw)
# Split features per image
spatial_merge_size = self.vision_tower.spatial_merge_size
split_sizes = (image_grid_thw.prod(dim=1) // (spatial_merge_size ** 2)).tolist()
image_features_list = list(torch.split(image_features, split_sizes))
# Replace IMAGE_TOKEN positions with image features
batch_size = input_ids.shape[0] if input_ids is not None else inputs_embeds.shape[0]
new_inputs_embeds_list = []
for batch_idx in range(batch_size):
cur_input_ids = input_ids[batch_idx] if input_ids is not None else None
cur_embeds = inputs_embeds[batch_idx]
if cur_input_ids is None or (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
new_inputs_embeds_list.append(cur_embeds)
continue
# Find IMAGE_TOKEN positions
image_positions = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist()
image_token_indices = [-1] + image_positions + [len(cur_input_ids)]
# Split embeddings and interleave with image features
cur_new_embeds = []
cur_image_idx = 0
for i in range(len(image_token_indices) - 1):
start = image_token_indices[i] + 1
end = image_token_indices[i + 1]
# Add text segment
if start < end:
cur_new_embeds.append(cur_embeds[start:end])
# Add image features (before the next segment, except after last)
if i < len(image_positions) and cur_image_idx < len(image_features_list):
cur_new_embeds.append(image_features_list[cur_image_idx].to(cur_embeds.dtype))
cur_image_idx += 1
if cur_new_embeds:
new_inputs_embeds_list.append(torch.cat(cur_new_embeds, dim=0))
else:
new_inputs_embeds_list.append(cur_embeds)
# Pad and stack
max_len = max(x.shape[0] for x in new_inputs_embeds_list)
hidden_size = new_inputs_embeds_list[0].shape[-1]
inputs_embeds = torch.zeros(
batch_size, max_len, hidden_size,
dtype=new_inputs_embeds_list[0].dtype,
device=new_inputs_embeds_list[0].device
)
for i, embed in enumerate(new_inputs_embeds_list):
inputs_embeds[i, :embed.shape[0]] = embed
batch_size, seq_length = inputs_embeds.shape[:2]
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + seq_length, device=inputs_embeds.device)
if position_ids is None:
# position_ids will be converted to 3D for M-RoPE in rotary_emb
position_ids = cache_position.unsqueeze(0)
# Position embeddings
position_embeddings = self.rotary_emb(inputs_embeds, position_ids)
hidden_states = inputs_embeds
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
hidden_states, attn_weights = layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
store_kv=store_kv,
)
if output_attentions:
all_attentions += (attn_weights,)
hidden_states = self.norm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
class DiffusionVL_Qwen2_5_VL_ForConditionalGeneration(DiffusionVL_Qwen2_5_VL_PreTrainedModel):
r"""
DiffusionVL Model with a language modeling head for diffusion-based generation.
This model uses block diffusion instead of autoregressive
generation. The `generate()` method implements the diffusion denoising process.
"""
# Weight tying keys - used when tie_word_embeddings=True
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: DiffusionVL_Qwen2_5_VL_Config):
super().__init__(config)
self.model = DiffusionVL_Qwen2_5_VL_Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Diffusion parameters
self.mask_token_id = config.mask_token_id
self.block_size = config.bd3lm_block_size
self.post_init()
def get_model(self):
return self.model
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def tie_weights(self):
"""Tie weights if config.tie_word_embeddings is True (3B model)."""
if getattr(self.config, "tie_word_embeddings", False):
# Call parent's tie_weights to tie lm_head with embed_tokens
super().tie_weights()
# else: do nothing, keep separate lm_head weights (7B model)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
past_key_values=None,
inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
pixel_values=None,
image_grid_thw=None,
**kwargs,
):
return_dict = return_dict if return_dict is not None else True
# Handle vision inputs if provided
if pixel_values is not None and inputs_embeds is None:
# Get vision features and merge with text
vision_features = self.model.vision_tower(pixel_values, image_grid_thw)
inputs_embeds = self._merge_vision_text(input_ids, vision_features)
input_ids = None
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
hidden_states = outputs.last_hidden_state
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss = F.cross_entropy(
shift_logits.view(-1, self.vocab_size),
shift_labels.view(-1),
ignore_index=-100,
)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def _merge_vision_text(self, input_ids, vision_features):
"""Merge vision features with text embeddings."""
text_embeds = self.model.embed_tokens(input_ids)
# Simple placeholder - full implementation would properly insert vision tokens
return text_embeds
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
images: Optional[torch.Tensor] = None,
image_sizes: Optional[torch.Tensor] = None,
image_grid_thws: Optional[torch.Tensor] = None,
modalities: Optional[List] = None,
gen_length: int = 256,
steps: int = 8,
temperature: float = 0.0,
**kwargs,
):
"""
Diffusion-based generation using BD3LM algorithm.
Follows the same logic as DiffusionVLQwenVLForCausalLM.generate():
1. If images provided, call prepare_inputs_labels_for_multimodal
2. Otherwise, just embed the input tokens
3. Call generate_with_bd3lm
Args:
inputs: Input token IDs (prompt) [batch_size, seq_len]
images: Image tensor (pixel_values) for vision inputs
image_sizes: Image sizes
image_grid_thws: Grid dimensions for vision inputs (num_images, 3)
modalities: List of modalities (e.g., ["image"])
gen_length: Number of tokens to generate
steps: Number of diffusion steps per block
temperature: Sampling temperature (0 for greedy)
Returns:
Generated token IDs
"""
if modalities is None:
modalities = ["image"]
if images is not None:
inputs_embeds = self.prepare_inputs_labels_for_multimodal(
input_ids=inputs,
images=images,
image_grid_thws=image_grid_thws,
)
else:
inputs_embeds = self.get_input_embeddings()(inputs)
# Call the BD3LM generation
return self.generate_with_bd3lm(
inputs_embeds=inputs_embeds,
gen_length=gen_length,
steps=steps,
temperature=temperature,
**kwargs,
)
def prepare_inputs_labels_for_multimodal(
self,
input_ids: torch.Tensor,
images: torch.Tensor,
image_grid_thws: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Prepare inputs_embeds by merging text embeddings with image features.
Uses LLaVA format: IMAGE_TOKEN_INDEX (-200) as placeholder.
Args:
input_ids: Input token IDs with IMAGE_TOKEN_INDEX (-200) as image placeholders
images: Pixel values tensor
image_grid_thws: Grid dimensions for each image
Returns:
inputs_embeds: Merged text + image embeddings
"""
IMAGE_TOKEN_INDEX = -200
device = input_ids.device
batch_size = input_ids.shape[0]
# Convert image_grid_thws to tensor if needed
if image_grid_thws is not None:
if not isinstance(image_grid_thws, torch.Tensor):
image_grid_thw = torch.tensor(image_grid_thws, device=device)
else:
image_grid_thw = image_grid_thws.to(device)
else:
raise ValueError("image_grid_thws is required for vision processing")
# 1. Get image features through vision tower + mm_projector
image_features = self.model.get_image_features(images, image_grid_thw)
# 2. Split features per image based on grid_thw
spatial_merge_size = self.model.vision_tower.spatial_merge_size
split_sizes = (image_grid_thw.prod(dim=1) // (spatial_merge_size ** 2)).tolist()
image_features_list = list(torch.split(image_features, split_sizes))
# 3. Build new input embeddings (LLaVA format)
new_input_embeds_list = []
for batch_idx in range(batch_size):
cur_input_ids = input_ids[batch_idx]
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum().item()
if num_images == 0:
# No image tokens, just embed text
cur_input_embeds = self.get_input_embeddings()(cur_input_ids)
new_input_embeds_list.append(cur_input_embeds)
continue
# LLaVA format: IMAGE_TOKEN_INDEX (-200) as placeholder
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [len(cur_input_ids)]
cur_input_ids_noim = []
for idx in range(len(image_token_indices) - 1):
start = image_token_indices[idx] + 1
end = image_token_indices[idx + 1]
if start < end:
cur_input_ids_noim.append(cur_input_ids[start:end])
if cur_input_ids_noim:
cur_input_embeds_noim = self.get_input_embeddings()(torch.cat(cur_input_ids_noim))
split_sizes_text = [x.shape[0] for x in cur_input_ids_noim]
cur_input_embeds_noim_split = list(torch.split(cur_input_embeds_noim, split_sizes_text))
else:
cur_input_embeds_noim_split = []
cur_new_input_embeds = []
cur_image_idx = 0
for idx in range(num_images + 1):
if idx < len(cur_input_embeds_noim_split):
cur_new_input_embeds.append(cur_input_embeds_noim_split[idx])
if idx < num_images and cur_image_idx < len(image_features_list):
cur_image_features = image_features_list[cur_image_idx]
target_dtype = cur_input_embeds_noim_split[0].dtype if cur_input_embeds_noim_split else images.dtype
cur_new_input_embeds.append(cur_image_features.to(target_dtype))
cur_image_idx += 1
if cur_new_input_embeds:
# Ensure all tensors are on the same device before cat (multi-GPU support)
target_device = cur_new_input_embeds[0].device
cur_new_input_embeds = [t.to(target_device) for t in cur_new_input_embeds]
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
else:
cur_new_input_embeds = self.get_input_embeddings()(cur_input_ids)
new_input_embeds_list.append(cur_new_input_embeds)
# 4. Pad to same length and stack
max_len = max(x.shape[0] for x in new_input_embeds_list)
hidden_size = new_input_embeds_list[0].shape[-1]
dtype = new_input_embeds_list[0].dtype
inputs_embeds = torch.zeros(batch_size, max_len, hidden_size, dtype=dtype, device=device)
for i, embed in enumerate(new_input_embeds_list):
inputs_embeds[i, :embed.shape[0]] = embed.to(device)
return inputs_embeds
@torch.no_grad()
def generate_with_bd3lm(
self,
inputs_embeds: torch.FloatTensor,
gen_length: int = 256,
steps: int = 8,
temperature: float = 0.0,
top_k: int = 0,
top_p: float = 1.0,
remasking_strategy: str = 'low_confidence_static',
use_kv_cache: bool = True,
confidence_threshold: float = 0.85,
**kwargs,
):
"""
BD3LM generation algorithm with KV-cache support.
Args:
inputs_embeds: Input embeddings (prompt)
gen_length: Number of tokens to generate
steps: Number of diffusion steps per block
temperature: Sampling temperature (0 for greedy)
top_k: Top-k sampling parameter
top_p: Top-p (nucleus) sampling parameter
remasking_strategy: 'low_confidence_static', 'low_confidence_dynamic', or 'sequential'
use_kv_cache: Whether to use KV cache (default True)
confidence_threshold: Threshold for low_confidence_dynamic strategy
Returns:
Generated token IDs
"""
device = inputs_embeds.device
batch_size = inputs_embeds.shape[0]
prompt_len = inputs_embeds.shape[1]
block_size = self.block_size
mask_id = self.mask_token_id
# Compute total length aligned to block size
num_blocks = (prompt_len + gen_length + block_size - 1) // block_size
total_length = num_blocks * block_size
# Initialize with mask tokens
x_ids = torch.full((batch_size, total_length), mask_id, dtype=torch.long, device=device)
# Get mask embedding and ensure it's on the same device as inputs_embeds
embed_layer = self.get_input_embeddings()
mask_embed = embed_layer(torch.tensor([mask_id], device=embed_layer.weight.device))
mask_embed = mask_embed.to(device) # Move to same device as inputs_embeds
x_embeds = mask_embed.repeat(batch_size, total_length, 1)
x_embeds[:, :prompt_len] = inputs_embeds.clone()
# Reconstruct prompt IDs from embeddings
prompt_logits = self.lm_head(inputs_embeds)
prompt_ids = torch.argmax(prompt_logits, dim=-1)
x_ids[:, :prompt_len] = prompt_ids
# Block causal mask
block_mask = torch.tril(torch.ones(num_blocks, num_blocks, device=device)).to(inputs_embeds.dtype)
block_diffusion_mask_bool = block_mask.repeat_interleave(block_size, dim=0) \
.repeat_interleave(block_size, dim=1).unsqueeze(0)
block_diffusion_mask = block_diffusion_mask_bool.unsqueeze(1)
block_diffusion_mask = torch.where(block_diffusion_mask == 0., torch.full_like(block_diffusion_mask, float('-inf')), 0.)
position_ids = torch.arange(total_length, device=device).unsqueeze(0).expand(batch_size, -1)
# KV-cache prefill
prefill_blocks = prompt_len // block_size
prefill_length = prefill_blocks * block_size
past_key_values = DynamicCache() if use_kv_cache else None
if use_kv_cache and prefill_length > 0:
prefill_embeds = x_embeds[:, :prefill_length]
prefill_mask = block_diffusion_mask[:, :, :prefill_length, :prefill_length]
prefill_pos_ids = position_ids[:, :prefill_length]
# Dict-format mask for BD3LM compatibility
model_mask = {"full_attention": prefill_mask, "sliding_attention": prefill_mask}
prefill_outputs = self.model(
inputs_embeds=prefill_embeds,
attention_mask=model_mask,
position_ids=prefill_pos_ids,
past_key_values=past_key_values,
use_cache=True,
store_kv=True
)
prefill_logits = self.lm_head(prefill_outputs.last_hidden_state).float()
self.last_prefill_logits = prefill_logits[:, -1:, :].clone()
past_key_values = prefill_outputs.past_key_values
# Calculate how many tokens to unmask per step
num_transfer_tokens = self._get_num_transfer_tokens(block_size, steps)
eos_token_id = kwargs.get('eos_token_id', 151645)
# Generate block by block
for block_idx in range(prefill_blocks, num_blocks):
block_start = block_idx * block_size
block_end = block_start + block_size
cur_block_embeds = x_embeds[:, block_start:block_end].clone()
cur_block_ids = x_ids[:, block_start:block_end]
cur_mask = block_diffusion_mask[:, :, block_start:block_end, :block_end]
cur_pos_ids = position_ids[:, block_start:block_end]
# Dict-format mask for BD3LM compatibility
model_mask = {"full_attention": cur_mask, "sliding_attention": cur_mask}
# Run diffusion steps within this block
for step in range(steps + 1):
# Check mask using embedding comparison (ensure same device for multi-GPU)
is_mask = torch.all(torch.abs(cur_block_embeds - mask_embed.to(cur_block_embeds.device)) < 1e-5, dim=-1)
if not is_mask.any():
# Store KV for fully unmasked block
if use_kv_cache:
_ = self.model(
inputs_embeds=cur_block_embeds,
attention_mask=model_mask,
position_ids=cur_pos_ids,
past_key_values=past_key_values,
use_cache=True,
store_kv=True
)
break
# Forward pass
if use_kv_cache:
outputs = self.model(
inputs_embeds=cur_block_embeds,
attention_mask=model_mask,
position_ids=cur_pos_ids,
past_key_values=past_key_values,
use_cache=True,
store_kv=False
)
logits = self.lm_head(outputs.last_hidden_state).float()
else:
# No KV-cache: recompute full context
context_embeds = x_embeds[:, :block_end].clone()
context_embeds[:, block_start:block_end] = cur_block_embeds
context_mask = block_diffusion_mask[:, :, :block_end, :block_end]
context_pos_ids = position_ids[:, :block_end]
context_model_mask = {"full_attention": context_mask, "sliding_attention": context_mask}
outputs = self.model(
inputs_embeds=context_embeds,
attention_mask=context_model_mask,
position_ids=context_pos_ids,
past_key_values=None,
use_cache=False,
store_kv=False
)
logits = self.lm_head(outputs.last_hidden_state[:, block_start:block_end]).float()
# Sample tokens
x0, x0_p = self._sample_tokens(logits, temperature, top_k, top_p)
# Select tokens to unmask based on strategy
num_to_transfer = num_transfer_tokens[step].item()
# Ensure all tensors are on the same device for multi-GPU support
target_device = x0.device
is_mask = is_mask.to(target_device)
x0_p = x0_p.to(target_device)
transfer_mask = torch.zeros_like(x0, dtype=torch.bool)
if remasking_strategy == 'sequential':
for j in range(batch_size):
if is_mask[j].any():
mask_positions = is_mask[j].nonzero(as_tuple=True)[0]
num_to_select = min(num_to_transfer, len(mask_positions))
selected_positions = mask_positions[:num_to_select]
transfer_mask[j, selected_positions] = True
elif remasking_strategy == 'low_confidence_static':
confidence = torch.where(is_mask, x0_p, torch.tensor(-torch.inf, device=target_device))
for j in range(batch_size):
num_masks = is_mask[j].sum().item()
k = min(num_to_transfer, num_masks)
if k > 0 and not torch.all(torch.isinf(confidence[j])):
_, idx = torch.topk(confidence[j], k)
transfer_mask[j, idx] = True
elif remasking_strategy == 'low_confidence_dynamic':
confidence = torch.where(is_mask, x0_p, torch.tensor(-torch.inf, device=target_device))
for j in range(batch_size):
high_conf_mask = confidence[j] > confidence_threshold
num_high_confidence = high_conf_mask.sum().item()
if num_high_confidence >= num_to_transfer:
transfer_mask[j] = high_conf_mask
else:
num_masks = is_mask[j].sum().item()
k = min(num_to_transfer, num_masks)
if k > 0:
_, idx = torch.topk(confidence[j], k)
transfer_mask[j, idx] = True
else:
raise ValueError(f"Unknown remasking strategy: {remasking_strategy}")
# Update tokens - ensure all tensors are on same device
cur_block_ids = cur_block_ids.to(x0.device)
cur_block_ids = torch.where(transfer_mask, x0, cur_block_ids)
# Get embeddings - move x0 to embed layer's device first
embed_layer = self.get_input_embeddings()
x0_embeds = embed_layer(x0.to(embed_layer.weight.device))
cur_block_embeds = cur_block_embeds.to(x0_embeds.device)
cur_block_embeds = torch.where(transfer_mask.unsqueeze(-1).to(x0_embeds.device), x0_embeds, cur_block_embeds)
# Update global state - handle multi-GPU
x_embeds[:, block_start:block_end] = cur_block_embeds.to(x_embeds.device)
x_ids[:, block_start:block_end] = cur_block_ids.to(x_ids.device)
# Check for EOS
if block_end > prompt_len:
gen_start_in_block = max(prompt_len, block_start)
gen_ids_check = x_ids[:, gen_start_in_block:block_end]
if eos_token_id in gen_ids_check:
break
# Return only generated tokens
return x_ids[:, prompt_len:prompt_len + gen_length]
def _sample_tokens(self, logits, temperature=0.0, top_k=0, top_p=1.0):
"""Sample tokens with temperature, top-k, and top-p."""
batch_size = logits.shape[0]
seq_len = logits.shape[1]
vocab_size = logits.shape[-1]
logits_2d = logits.reshape(-1, vocab_size)
if temperature == 0:
# Greedy sampling
tokens = torch.argmax(logits_2d, dim=-1, keepdim=True)
probs = F.softmax(logits_2d, dim=-1)
token_probs = torch.gather(probs, -1, tokens)
else:
# Apply temperature
logits_scaled = logits_2d / temperature
# Apply top-k
if top_k > 0:
values, _ = torch.topk(logits_scaled, top_k)
min_values = values[:, -1:]
logits_scaled = torch.where(logits_scaled < min_values, float('-inf'), logits_scaled)
# Apply top-p
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits_scaled, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_mask = cumulative_probs > top_p
sorted_mask[:, 1:] = sorted_mask[:, :-1].clone()
sorted_mask[:, 0] = False
mask_indices = torch.scatter(
torch.zeros_like(logits_scaled, dtype=torch.bool),
-1, sorted_indices, sorted_mask
)
logits_scaled = logits_scaled.masked_fill(mask_indices, float('-inf'))
probs = F.softmax(logits_scaled, dim=-1)
tokens = torch.multinomial(probs, num_samples=1)
token_probs = torch.gather(probs, -1, tokens)
return tokens.view(batch_size, seq_len), token_probs.view(batch_size, seq_len)
def _get_num_transfer_tokens(self, block_length, steps):
"""Calculate how many tokens to unmask at each step."""
if steps == 0:
return torch.zeros(1, dtype=torch.int64)
base = block_length // steps
remainder = block_length % steps
num_transfer = torch.zeros(steps + 1, dtype=torch.int64) + base
num_transfer[:remainder] += 1
return num_transfer
from transformers import AutoConfig, AutoModelForCausalLM
AutoConfig.register("diffusionvl_qwen2_5_vl", DiffusionVL_Qwen2_5_VL_Config)
AutoModelForCausalLM.register(DiffusionVL_Qwen2_5_VL_Config, DiffusionVL_Qwen2_5_VL_ForConditionalGeneration)
__all__ = [
"DiffusionVL_Qwen2_5_VL_Config",
"DiffusionVL_Qwen2_5_VL_VisionConfig",
"DiffusionVL_Qwen2_5_VL_PreTrainedModel",
"DiffusionVL_Qwen2_5_VL_Model",
"DiffusionVL_Qwen2_5_VL_ForConditionalGeneration",
]