File size: 12,528 Bytes
b8d31f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# coding=utf-8
# Copyright 2025 The HustVL Team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on Qwen2.5-VL, which is derived from EleutherAI's GPT-NeoX library
# and the GPT-NeoX and OPT implementations. It has been modified to create DiffusionVL.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
DiffusionVL Processor - Combines image processor and tokenizer.
"""

import re
from typing import List, Optional, Union

import torch

from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.video_utils import VideoInput


IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"


class DiffusionVL_Qwen2_5_VL_ProcessorKwargs(ProcessingKwargs, total=False):
    """Keyword arguments for DiffusionVL_Qwen2_5_VL_Processor."""

    _defaults = {
        "text_kwargs": {
            "padding": False,
        },
    }


def tokenizer_image_token(
    prompt: str,
    tokenizer,
    image_token_index: int = IMAGE_TOKEN_INDEX,
    return_tensors: Optional[str] = None,
) -> Union[List[int], torch.Tensor]:
    """
    Tokenize text with image placeholders, replacing <image> with IMAGE_TOKEN_INDEX.

    Args:
        prompt: Input text containing <image> placeholders.
        tokenizer: The tokenizer to use for encoding text.
        image_token_index: The token index to use for image placeholders.
        return_tensors: If "pt", return a PyTorch tensor.

    Returns:
        List of token IDs or a PyTorch tensor.
    """
    prompt_chunks = prompt.split(DEFAULT_IMAGE_TOKEN)

    input_ids = []
    offset = 0

    if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0:
        # First chunk has text
        input_ids = tokenizer(prompt_chunks[0], add_special_tokens=False).input_ids
        offset = 1

    for chunk_idx in range(offset, len(prompt_chunks)):
        chunk = prompt_chunks[chunk_idx]
        # Add image token
        input_ids.append(image_token_index)
        # Add text after image
        if len(chunk) > 0:
            input_ids.extend(tokenizer(chunk, add_special_tokens=False).input_ids)

    if return_tensors == "pt":
        return torch.tensor(input_ids, dtype=torch.long)
    return input_ids


class DiffusionVL_Qwen2_5_VL_Processor(ProcessorMixin):
    r"""
    Constructs a DiffusionVL processor which wraps an image processor and a tokenizer into a single processor.

    [`DiffusionVL_Qwen2_5_VL_Processor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`].
    See the [`~DiffusionVL_Qwen2_5_VL_Processor.__call__`] and [`~DiffusionVL_Qwen2_5_VL_Processor.decode`] for more information.

    This processor uses LLaVA-style image token handling:
    - `<image>` in text is replaced with `IMAGE_TOKEN_INDEX` (-200) in input_ids
    - The model's `prepare_inputs_labels_for_multimodal` replaces -200 with actual image features

    Args:
        image_processor ([`Qwen2VLImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`Qwen2TokenizerFast`], *optional*):
            The tokenizer is a required input.
        chat_template (`str`, *optional*):
            A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string.

    Example:

    ```python
    >>> from transformers import AutoProcessor
    >>> from PIL import Image

    >>> processor = AutoProcessor.from_pretrained("path/to/model", trust_remote_code=True)

    >>> # Prepare text with image placeholder
    >>> messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Describe this image."}]}]
    >>> text = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

    >>> # Process image and text
    >>> image = Image.open("image.jpg")
    >>> inputs = processor(text=[text], images=[image], return_tensors="pt")
    ```
    """

    attributes = ["image_processor", "tokenizer"]
    image_processor_class = "Qwen2VLImageProcessor"
    tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")

    def __init__(
        self,
        image_processor=None,
        tokenizer=None,
        chat_template: Optional[str] = None,
        **kwargs,
    ):
        self.image_token = DEFAULT_IMAGE_TOKEN
        self.image_token_index = IMAGE_TOKEN_INDEX

        super().__init__(image_processor, tokenizer, chat_template=chat_template)

    def __call__(
        self,
        images: Optional[ImageInput] = None,
        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
        videos: Optional[VideoInput] = None,
        **kwargs: Unpack[DiffusionVL_Qwen2_5_VL_ProcessorKwargs],
    ) -> BatchFeature:
        """
        Main method to prepare for the model one or several sequences and image(s).

        This method forwards the `text` and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`]
        if `text` is not `None` to encode the text. To prepare the vision inputs, this method forwards the `images`
        and `kwargs` arguments to Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `images` is not `None`.

        The text should contain `<image>` placeholders where images should be inserted.
        These will be replaced with `IMAGE_TOKEN_INDEX` (-200) in the output input_ids.

        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, *optional*):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array, or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`str`, `List[str]`, *optional*):
                The sequence or batch of sequences to be encoded. Each sequence should be a string containing
                `<image>` placeholders where images will be inserted.
            videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, *optional*):
                The video or batch of videos to be prepared. Currently not fully supported.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model.
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
            - **image_grid_thw** -- List of image 3D grid dimensions. Returned when `images` is not `None`.
        """
        output_kwargs = self._merge_kwargs(
            DiffusionVL_Qwen2_5_VL_ProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )

        # Process images
        image_inputs = {}
        if images is not None:
            image_inputs = self.image_processor(
                images=images, **output_kwargs.get("images_kwargs", {})
            )

        # Handle text input
        if text is None:
            return BatchFeature(data=image_inputs)

        if not isinstance(text, list):
            text = [text]

        # Tokenize with LLaVA-style image token handling
        return_tensors = output_kwargs.get("text_kwargs", {}).pop("return_tensors", None)

        all_input_ids = []
        for t in text:
            input_ids = tokenizer_image_token(
                t, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors=None
            )
            all_input_ids.append(input_ids)

        # Pad sequences
        max_len = max(len(ids) for ids in all_input_ids)
        padded_input_ids = []
        attention_masks = []

        pad_token_id = (
            self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else 0
        )

        for ids in all_input_ids:
            padding_length = max_len - len(ids)
            padded_ids = ids + [pad_token_id] * padding_length
            mask = [1] * len(ids) + [0] * padding_length
            padded_input_ids.append(padded_ids)
            attention_masks.append(mask)

        text_inputs = {
            "input_ids": padded_input_ids,
            "attention_mask": attention_masks,
        }

        return BatchFeature(data={**text_inputs, **image_inputs}, tensor_type=return_tensors)

    def build_conversation_input_ids(
        self,
        messages: List[dict],
        images: Optional[List] = None,
        add_generation_prompt: bool = True,
    ) -> dict:
        """
        Build input_ids from conversation messages in LLaVA format.

        This method converts a list of messages into a prompt string with `<image>` placeholders.
        Uses LLaVA-style chat template format (trained format).

        Args:
            messages: List of message dicts with 'role' and 'content' keys.
                Content can be a string or a list of dicts with 'type' key ('text' or 'image').
            images: Optional list of images (used for validation).
            add_generation_prompt: Whether to add generation prompt at the end.

        Returns:
            dict with 'text' key containing the prompt string with `<image>` placeholders.
        """
        # Build LLaVA-style prompt directly
        # Format: <|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<image>\nPrompt<|im_end|>\n<|im_start|>assistant\n

        text_parts = []

        for message in messages:
            role = message.get("role", "user")
            content = message.get("content", "")

            text_parts.append(f"<|im_start|>{role}\n")

            # Handle content - can be string or list of content items
            if isinstance(content, str):
                text_parts.append(content)
            elif isinstance(content, list):
                for item in content:
                    if isinstance(item, dict):
                        if item.get("type") == "image":
                            text_parts.append(DEFAULT_IMAGE_TOKEN)
                        elif item.get("type") == "text":
                            text_parts.append(item.get("text", ""))
                    else:
                        text_parts.append(str(item))

            text_parts.append("<|im_end|>\n")

        if add_generation_prompt:
            text_parts.append("<|im_start|>assistant\n")

        text = "".join(text_parts)
        return {"text": text}

    def batch_decode(self, *args, **kwargs):
        """
        Decode a batch of token IDs to text.

        This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`].
        Please refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        """
        Decode token IDs to text.

        This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`].
        Please refer to the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    @property
    def model_input_names(self) -> List[str]:
        """Return the list of model input names."""
        tokenizer_names = self.tokenizer.model_input_names
        image_processor_names = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_names + image_processor_names))


__all__ = ["DiffusionVL_Qwen2_5_VL_Processor", "tokenizer_image_token"]