Upload 6 files
Browse files- public/example_page.md +22 -0
- public/prompts.ini +66 -0
- public/publicapi.py +988 -0
- public/settings.json +20 -0
- public/stablebeta.py +1151 -0
- public/styles.css +58 -0
public/example_page.md
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!-- docs/example_page.md -->
|
| 2 |
+
# GhostAI Music Generator β Quick Links
|
| 3 |
+
|
| 4 |
+
- **MusicGen Large (Meta):** https://huggingface.co/facebook/musicgen-large
|
| 5 |
+
- **GhostAI assets & scripts:**
|
| 6 |
+
- Repo hub: https://huggingface.co/ghostai1/GHOSTSONAFB
|
| 7 |
+
- Stable 12GB build (example): https://huggingface.co/ghostai1/GHOSTSONAFB/blob/main/STABLE12gb3060.py
|
| 8 |
+
- 30s large script: https://huggingface.co/ghostai1/GHOSTSONAFB/blob/main/stable12gblg30sec.py
|
| 9 |
+
|
| 10 |
+
## Notes
|
| 11 |
+
- GPU: CUDA-capable, 12GB+ VRAM recommended.
|
| 12 |
+
- The app exposes an API on `:8555`:
|
| 13 |
+
- `GET /genres` β list available presets from `prompts.ini`
|
| 14 |
+
- `GET /prompt/{name}` β generate a prompt string (query params: `bpm`, `drum_beat`, `synthesizer`, `rhythmic_steps`, `bass_style`, `guitar_style`)
|
| 15 |
+
- **Aliases from INI** (examples):
|
| 16 |
+
- `/set_classic_rock_prompt` β Metallica
|
| 17 |
+
- `/set_nirvana_grunge_prompt` β Nirvana
|
| 18 |
+
- `/set_pearl_jam_grunge_prompt` β Pearl Jam
|
| 19 |
+
- `/set_soundgarden_grunge_prompt` β Soundgarden
|
| 20 |
+
- `/set_foo_fighters_prompt` β Foo Fighters
|
| 21 |
+
- `/set_star_wars_prompt` β Cinematic Star Wars-style orchestral
|
| 22 |
+
- `POST /render` β render an MP3. Body includes `instrumental_prompt` and optional overrides (duration, temperature, etc.).
|
public/prompts.ini
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# prompts.ini
|
| 2 |
+
# Centralized prompt knobs for buttons + API aliases
|
| 3 |
+
# Add/adjust sections; the app auto-loads buttons and endpoints.
|
| 4 |
+
|
| 5 |
+
[metallica]
|
| 6 |
+
bpm_min=90
|
| 7 |
+
bpm_max=140
|
| 8 |
+
drum_beat=standard rock,techno kick
|
| 9 |
+
synthesizer=none
|
| 10 |
+
rhythmic_steps=steady steps,complex steps
|
| 11 |
+
bass_style=deep bass,melodic bass
|
| 12 |
+
guitar_style=distorted
|
| 13 |
+
api_name=/set_classic_rock_prompt
|
| 14 |
+
|
| 15 |
+
[nirvana]
|
| 16 |
+
bpm_min=100
|
| 17 |
+
bpm_max=130
|
| 18 |
+
drum_beat=standard rock
|
| 19 |
+
synthesizer=none
|
| 20 |
+
rhythmic_steps=steady steps
|
| 21 |
+
bass_style=deep bass
|
| 22 |
+
guitar_style=distorted,clean
|
| 23 |
+
api_name=/set_nirvana_grunge_prompt
|
| 24 |
+
|
| 25 |
+
[pearl_jam]
|
| 26 |
+
bpm_min=100
|
| 27 |
+
bpm_max=140
|
| 28 |
+
drum_beat=standard rock
|
| 29 |
+
synthesizer=none
|
| 30 |
+
rhythmic_steps=steady steps,syncopated steps
|
| 31 |
+
bass_style=melodic bass
|
| 32 |
+
guitar_style=clean,distorted
|
| 33 |
+
api_name=/set_pearl_jam_grunge_prompt
|
| 34 |
+
|
| 35 |
+
[soundgarden]
|
| 36 |
+
bpm_min=90
|
| 37 |
+
bpm_max=130
|
| 38 |
+
drum_beat=standard rock
|
| 39 |
+
synthesizer=none
|
| 40 |
+
rhythmic_steps=complex steps
|
| 41 |
+
bass_style=deep bass
|
| 42 |
+
guitar_style=distorted
|
| 43 |
+
api_name=/set_soundgarden_grunge_prompt
|
| 44 |
+
|
| 45 |
+
[foo_fighters]
|
| 46 |
+
bpm_min=110
|
| 47 |
+
bpm_max=150
|
| 48 |
+
drum_beat=standard rock
|
| 49 |
+
synthesizer=none
|
| 50 |
+
rhythmic_steps=steady steps
|
| 51 |
+
bass_style=melodic bass
|
| 52 |
+
guitar_style=distorted,clean
|
| 53 |
+
api_name=/set_foo_fighters_prompt
|
| 54 |
+
|
| 55 |
+
# New: Cinematic / Star Wars-inspired classical
|
| 56 |
+
# Optional 'styles' enhances descriptive tags for orchestral color.
|
| 57 |
+
[star_wars_classical]
|
| 58 |
+
bpm_min=84
|
| 59 |
+
bpm_max=126
|
| 60 |
+
drum_beat=orchestral percussion
|
| 61 |
+
synthesizer=none
|
| 62 |
+
rhythmic_steps=steady steps,complex steps
|
| 63 |
+
bass_style=contrabass ostinato
|
| 64 |
+
guitar_style=none
|
| 65 |
+
styles=heroic brass,sweeping strings,soaring horns,timpani rolls,choir pads
|
| 66 |
+
api_name=/set_star_wars_prompt
|
public/publicapi.py
ADDED
|
@@ -0,0 +1,988 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
#!/usr/bin/env python3
|
| 3 |
+
# -*- coding: utf-8 -*-
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
import sys
|
| 7 |
+
import gc
|
| 8 |
+
import re
|
| 9 |
+
import json
|
| 10 |
+
import time
|
| 11 |
+
import math
|
| 12 |
+
import mmap
|
| 13 |
+
import torch
|
| 14 |
+
import random
|
| 15 |
+
import logging
|
| 16 |
+
import warnings
|
| 17 |
+
import traceback
|
| 18 |
+
import subprocess
|
| 19 |
+
import tempfile
|
| 20 |
+
import numpy as np
|
| 21 |
+
import torchaudio
|
| 22 |
+
import gradio as gr
|
| 23 |
+
import gradio_client.utils
|
| 24 |
+
import configparser
|
| 25 |
+
from pydub import AudioSegment
|
| 26 |
+
from datetime import datetime
|
| 27 |
+
from pathlib import Path
|
| 28 |
+
from typing import Optional, Tuple, Dict, Any, List
|
| 29 |
+
from torch.cuda.amp import autocast
|
| 30 |
+
|
| 31 |
+
from fastapi import FastAPI, HTTPException, Query
|
| 32 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 33 |
+
from pydantic import BaseModel
|
| 34 |
+
import uvicorn
|
| 35 |
+
import threading
|
| 36 |
+
from logging.handlers import RotatingFileHandler
|
| 37 |
+
|
| 38 |
+
# ======================================================================================
|
| 39 |
+
# RUNTIME, LOGGING, PATCHES
|
| 40 |
+
# ======================================================================================
|
| 41 |
+
|
| 42 |
+
_original_get_type = gradio_client.utils.get_type
|
| 43 |
+
def _patched_get_type(schema):
|
| 44 |
+
if isinstance(schema, bool):
|
| 45 |
+
return "boolean"
|
| 46 |
+
return _original_get_type(schema)
|
| 47 |
+
gradio_client.utils.get_type = _patched_get_type
|
| 48 |
+
|
| 49 |
+
warnings.filterwarnings("ignore")
|
| 50 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
|
| 51 |
+
torch.backends.cudnn.benchmark = False
|
| 52 |
+
torch.backends.cudnn.deterministic = True
|
| 53 |
+
|
| 54 |
+
LOG_DIR = "logs"
|
| 55 |
+
MP3_DIR = "mp3"
|
| 56 |
+
os.makedirs(LOG_DIR, exist_ok=True)
|
| 57 |
+
os.makedirs(MP3_DIR, exist_ok=True)
|
| 58 |
+
|
| 59 |
+
LOG_FILE = os.path.join(LOG_DIR, "ghostai_musicgen.log")
|
| 60 |
+
logger = logging.getLogger("ghostai-musicgen")
|
| 61 |
+
logger.setLevel(logging.DEBUG)
|
| 62 |
+
logger.handlers = [] # prevent duplicate handlers on hot-reload
|
| 63 |
+
|
| 64 |
+
file_handler = RotatingFileHandler(
|
| 65 |
+
LOG_FILE,
|
| 66 |
+
maxBytes=5 * 1024 * 1024, # 5 MB cap
|
| 67 |
+
backupCount=0, # single file only; truncate on rollover
|
| 68 |
+
encoding="utf-8",
|
| 69 |
+
delay=True
|
| 70 |
+
)
|
| 71 |
+
file_handler.setFormatter(logging.Formatter("%(asctime)s [%(levelname)s] %(message)s"))
|
| 72 |
+
stdout_handler = logging.StreamHandler(sys.stdout)
|
| 73 |
+
stdout_handler.setFormatter(logging.Formatter("%(asctime)s [%(levelname)s] %(message)s"))
|
| 74 |
+
logger.addHandler(file_handler)
|
| 75 |
+
logger.addHandler(stdout_handler)
|
| 76 |
+
|
| 77 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 78 |
+
if DEVICE != "cuda":
|
| 79 |
+
logger.error("CUDA GPU is required. Exiting.")
|
| 80 |
+
sys.exit(1)
|
| 81 |
+
logger.info(f"GPU: {torch.cuda.get_device_name(0)}")
|
| 82 |
+
|
| 83 |
+
# ======================================================================================
|
| 84 |
+
# SETTINGS PERSISTENCE
|
| 85 |
+
# ======================================================================================
|
| 86 |
+
|
| 87 |
+
SETTINGS_FILE = "settings.json"
|
| 88 |
+
PROMPTS_INI = "prompts.ini"
|
| 89 |
+
STYLES_CSS = "styles.css"
|
| 90 |
+
|
| 91 |
+
DEFAULT_SETTINGS: Dict[str, Any] = {
|
| 92 |
+
"cfg_scale": 5.8,
|
| 93 |
+
"top_k": 250,
|
| 94 |
+
"top_p": 0.95,
|
| 95 |
+
"temperature": 0.90,
|
| 96 |
+
"total_duration": 60,
|
| 97 |
+
"bpm": 120,
|
| 98 |
+
"drum_beat": "none",
|
| 99 |
+
"synthesizer": "none",
|
| 100 |
+
"rhythmic_steps": "none",
|
| 101 |
+
"bass_style": "none",
|
| 102 |
+
"guitar_style": "none",
|
| 103 |
+
"target_volume": -23.0,
|
| 104 |
+
"preset": "default",
|
| 105 |
+
"max_steps": 1500,
|
| 106 |
+
"bitrate": "192k",
|
| 107 |
+
"output_sample_rate": "48000",
|
| 108 |
+
"bit_depth": "16",
|
| 109 |
+
"instrumental_prompt": ""
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
def load_settings() -> Dict[str, Any]:
|
| 113 |
+
try:
|
| 114 |
+
if os.path.exists(SETTINGS_FILE):
|
| 115 |
+
with open(SETTINGS_FILE, "r") as f:
|
| 116 |
+
data = json.load(f)
|
| 117 |
+
for k, v in DEFAULT_SETTINGS.items():
|
| 118 |
+
data.setdefault(k, v)
|
| 119 |
+
logger.info(f"Loaded settings from {SETTINGS_FILE}")
|
| 120 |
+
return data
|
| 121 |
+
except Exception as e:
|
| 122 |
+
logger.error(f"Settings load failed: {e}")
|
| 123 |
+
return DEFAULT_SETTINGS.copy()
|
| 124 |
+
|
| 125 |
+
def save_settings(s: Dict[str, Any]) -> None:
|
| 126 |
+
try:
|
| 127 |
+
with open(SETTINGS_FILE, "w") as f:
|
| 128 |
+
json.dump(s, f, indent=2)
|
| 129 |
+
logger.info(f"Saved settings to {SETTINGS_FILE}")
|
| 130 |
+
except Exception as e:
|
| 131 |
+
logger.error(f"Settings save failed: {e}")
|
| 132 |
+
|
| 133 |
+
SETTINGS = load_settings()
|
| 134 |
+
|
| 135 |
+
# ======================================================================================
|
| 136 |
+
# PROMPT CONFIG (prompts.ini)
|
| 137 |
+
# ======================================================================================
|
| 138 |
+
|
| 139 |
+
def _csv_list(s: str) -> List[str]:
|
| 140 |
+
if not s or s.strip().lower() == "none":
|
| 141 |
+
return []
|
| 142 |
+
return [x.strip() for x in s.split(",") if x.strip()]
|
| 143 |
+
|
| 144 |
+
PROMPT_CFG = configparser.ConfigParser()
|
| 145 |
+
if not os.path.exists(PROMPTS_INI):
|
| 146 |
+
PROMPT_CFG["metallica"] = {
|
| 147 |
+
"bpm_min": "90", "bpm_max": "140",
|
| 148 |
+
"drum_beat": "standard rock,techno kick",
|
| 149 |
+
"synthesizer": "none",
|
| 150 |
+
"rhythmic_steps": "steady steps,complex steps",
|
| 151 |
+
"bass_style": "deep bass,melodic bass",
|
| 152 |
+
"guitar_style": "distorted",
|
| 153 |
+
"api_name": "/set_classic_rock_prompt"
|
| 154 |
+
}
|
| 155 |
+
with open(PROMPTS_INI, "w") as f:
|
| 156 |
+
PROMPT_CFG.write(f)
|
| 157 |
+
PROMPT_CFG.read(PROMPTS_INI)
|
| 158 |
+
|
| 159 |
+
def list_genres() -> List[str]:
|
| 160 |
+
return PROMPT_CFG.sections()
|
| 161 |
+
|
| 162 |
+
def get_api_aliases() -> Dict[str, str]:
|
| 163 |
+
out = {}
|
| 164 |
+
for sec in PROMPT_CFG.sections():
|
| 165 |
+
api_name = PROMPT_CFG.get(sec, "api_name", fallback="").strip()
|
| 166 |
+
if api_name:
|
| 167 |
+
out[api_name] = sec
|
| 168 |
+
return out
|
| 169 |
+
|
| 170 |
+
def _humanize(name: str) -> str:
|
| 171 |
+
return name.replace("_", " ").title()
|
| 172 |
+
|
| 173 |
+
def build_prompt_from_section(
|
| 174 |
+
section: str,
|
| 175 |
+
bpm: Optional[int] = None,
|
| 176 |
+
drum_beat: Optional[str] = None,
|
| 177 |
+
synthesizer: Optional[str] = None,
|
| 178 |
+
rhythmic_steps: Optional[str] = None,
|
| 179 |
+
bass_style: Optional[str] = None,
|
| 180 |
+
guitar_style: Optional[str] = None
|
| 181 |
+
) -> str:
|
| 182 |
+
if section not in PROMPT_CFG:
|
| 183 |
+
return f"Instrumental track at 120 BPM."
|
| 184 |
+
cfg = PROMPT_CFG[section]
|
| 185 |
+
bpm_min = cfg.getint("bpm_min", fallback=100)
|
| 186 |
+
bpm_max = cfg.getint("bpm_max", fallback=130)
|
| 187 |
+
bpm = bpm if bpm else random.randint(bpm_min, bpm_max)
|
| 188 |
+
bpm = max(bpm_min, min(bpm_max, bpm))
|
| 189 |
+
|
| 190 |
+
def pick(value: Optional[str], pool_key: str) -> str:
|
| 191 |
+
pool = _csv_list(cfg.get(pool_key, fallback=""))
|
| 192 |
+
if not pool:
|
| 193 |
+
return "" if (not value or value == "none") else f", {value}"
|
| 194 |
+
if (not value) or value == "none" or value not in pool:
|
| 195 |
+
choice = random.choice(pool)
|
| 196 |
+
return "" if choice == "none" else f", {choice}"
|
| 197 |
+
return f", {value}"
|
| 198 |
+
|
| 199 |
+
drum = pick(drum_beat, "drum_beat")
|
| 200 |
+
synth = pick(synthesizer, "synthesizer")
|
| 201 |
+
steps = pick(rhythmic_steps, "rhythmic_steps")
|
| 202 |
+
bass = pick(bass_style, "bass_style")
|
| 203 |
+
guitar = pick(guitar_style, "guitar_style")
|
| 204 |
+
|
| 205 |
+
styles_csv = cfg.get("styles", fallback="").strip()
|
| 206 |
+
styles_str = ""
|
| 207 |
+
if styles_csv:
|
| 208 |
+
styles = _csv_list(styles_csv)
|
| 209 |
+
if styles:
|
| 210 |
+
styles_str = ", " + ", ".join(styles)
|
| 211 |
+
|
| 212 |
+
label = _humanize(section)
|
| 213 |
+
if "star_wars" in section or "classical" in section:
|
| 214 |
+
return (
|
| 215 |
+
f"Cinematic orchestral score{styles_str}{drum}{synth}{steps}{bass}{guitar}, "
|
| 216 |
+
f"space-opera energy, sweeping strings, heroic brass, bold timpani at {bpm} BPM."
|
| 217 |
+
)
|
| 218 |
+
return (
|
| 219 |
+
f"Instrumental {label}{guitar}{bass}{drum}{synth}{steps} at {bpm} BPM, "
|
| 220 |
+
f"dynamic sections (intro/verse/chorus), cohesive song flow."
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
# ======================================================================================
|
| 224 |
+
# VRAM / DISK / CLEANUP
|
| 225 |
+
# ======================================================================================
|
| 226 |
+
|
| 227 |
+
def clean_memory() -> Optional[float]:
|
| 228 |
+
try:
|
| 229 |
+
torch.cuda.empty_cache()
|
| 230 |
+
gc.collect()
|
| 231 |
+
torch.cuda.ipc_collect()
|
| 232 |
+
torch.cuda.synchronize()
|
| 233 |
+
return torch.cuda.memory_allocated() / 1024**2
|
| 234 |
+
except Exception as e:
|
| 235 |
+
logger.error(f"clean_memory failed: {e}")
|
| 236 |
+
return None
|
| 237 |
+
|
| 238 |
+
def check_vram():
|
| 239 |
+
try:
|
| 240 |
+
r = subprocess.run(
|
| 241 |
+
['nvidia-smi', '--query-gpu=memory.used,memory.total', '--format=csv'],
|
| 242 |
+
capture_output=True, text=True
|
| 243 |
+
)
|
| 244 |
+
lines = r.stdout.splitlines()
|
| 245 |
+
if len(lines) > 1:
|
| 246 |
+
used_mb, total_mb = map(int, re.findall(r'\d+', lines[1]))
|
| 247 |
+
free_mb = total_mb - used_mb
|
| 248 |
+
logger.info(f"VRAM: used {used_mb} MiB | free {free_mb} MiB | total {total_mb} MiB")
|
| 249 |
+
return free_mb
|
| 250 |
+
except Exception as e:
|
| 251 |
+
logger.error(f"check_vram failed: {e}")
|
| 252 |
+
return None
|
| 253 |
+
|
| 254 |
+
def check_disk_space(path=".") -> bool:
|
| 255 |
+
try:
|
| 256 |
+
stat = os.statvfs(path)
|
| 257 |
+
free_gb = stat.f_bavail * stat.f_frsize / (1024**3)
|
| 258 |
+
if free_gb < 1.0:
|
| 259 |
+
logger.warning(f"Low disk space: {free_gb:.2f} GB")
|
| 260 |
+
return free_gb >= 1.0
|
| 261 |
+
except Exception as e:
|
| 262 |
+
logger.error(f"Disk space check failed: {e}")
|
| 263 |
+
return False
|
| 264 |
+
|
| 265 |
+
# ======================================================================================
|
| 266 |
+
# MODEL LOAD
|
| 267 |
+
# ======================================================================================
|
| 268 |
+
|
| 269 |
+
try:
|
| 270 |
+
from audiocraft.models import MusicGen
|
| 271 |
+
except Exception as e:
|
| 272 |
+
logger.error("audiocraft is required. pip install audiocraft")
|
| 273 |
+
raise
|
| 274 |
+
|
| 275 |
+
def load_model():
|
| 276 |
+
free_vram = check_vram()
|
| 277 |
+
if free_vram is not None and free_vram < 5000:
|
| 278 |
+
logger.warning("Low free VRAM; consider closing other GPU apps.")
|
| 279 |
+
clean_memory()
|
| 280 |
+
local_model_path = "./models/musicgen-large"
|
| 281 |
+
if not os.path.exists(local_model_path):
|
| 282 |
+
logger.error(f"Missing weights at {local_model_path}")
|
| 283 |
+
sys.exit(1)
|
| 284 |
+
logger.info("Loading MusicGen (large)...")
|
| 285 |
+
with autocast(dtype=torch.float16):
|
| 286 |
+
model = MusicGen.get_pretrained(local_model_path, device=DEVICE)
|
| 287 |
+
model.set_generation_params(duration=30, two_step_cfg=False)
|
| 288 |
+
logger.info("MusicGen loaded.")
|
| 289 |
+
return model
|
| 290 |
+
|
| 291 |
+
musicgen_model = load_model()
|
| 292 |
+
|
| 293 |
+
# ======================================================================================
|
| 294 |
+
# AUDIO DSP
|
| 295 |
+
# ======================================================================================
|
| 296 |
+
|
| 297 |
+
def ensure_stereo(seg: AudioSegment, sample_rate=48000, sample_width=2) -> AudioSegment:
|
| 298 |
+
try:
|
| 299 |
+
if seg.channels != 2:
|
| 300 |
+
seg = seg.set_channels(2)
|
| 301 |
+
if seg.frame_rate != sample_rate:
|
| 302 |
+
seg = seg.set_frame_rate(sample_rate)
|
| 303 |
+
return seg
|
| 304 |
+
except Exception:
|
| 305 |
+
return seg
|
| 306 |
+
|
| 307 |
+
def calculate_rms(seg: AudioSegment) -> float:
|
| 308 |
+
try:
|
| 309 |
+
samples = np.array(seg.get_array_of_samples(), dtype=np.float32)
|
| 310 |
+
return float(np.sqrt(np.mean(samples**2)))
|
| 311 |
+
except Exception:
|
| 312 |
+
return 0.0
|
| 313 |
+
|
| 314 |
+
def hard_limit(seg: AudioSegment, limit_db=-3.0, sample_rate=48000) -> AudioSegment:
|
| 315 |
+
try:
|
| 316 |
+
seg = ensure_stereo(seg, sample_rate, seg.sample_width)
|
| 317 |
+
limit = 10 ** (limit_db / 20.0) * (2**23 if seg.sample_width == 3 else 32767)
|
| 318 |
+
x = np.array(seg.get_array_of_samples(), dtype=np.float32)
|
| 319 |
+
x = np.clip(x, -limit, limit).astype(np.int32 if seg.sample_width == 3 else np.int16)
|
| 320 |
+
if len(x) % 2 != 0:
|
| 321 |
+
x = x[:-1]
|
| 322 |
+
return AudioSegment(x.tobytes(), frame_rate=sample_rate, sample_width=seg.sample_width, channels=2)
|
| 323 |
+
except Exception:
|
| 324 |
+
return seg
|
| 325 |
+
|
| 326 |
+
def rms_normalize(seg: AudioSegment, target_rms_db=-23.0, peak_limit_db=-3.0, sample_rate=48000) -> AudioSegment:
|
| 327 |
+
try:
|
| 328 |
+
seg = ensure_stereo(seg, sample_rate, seg.sample_width)
|
| 329 |
+
target = 10 ** (target_rms_db / 20) * (2**23 if seg.sample_width == 3 else 32767)
|
| 330 |
+
current = calculate_rms(seg)
|
| 331 |
+
if current > 0:
|
| 332 |
+
gain = target / current
|
| 333 |
+
seg = seg.apply_gain(20 * np.log10(max(gain, 1e-6)))
|
| 334 |
+
seg = hard_limit(seg, limit_db=peak_limit_db, sample_rate=sample_rate)
|
| 335 |
+
return seg
|
| 336 |
+
except Exception:
|
| 337 |
+
return seg
|
| 338 |
+
|
| 339 |
+
def balance_stereo(seg: AudioSegment, noise_threshold=-40, sample_rate=48000) -> AudioSegment:
|
| 340 |
+
try:
|
| 341 |
+
seg = ensure_stereo(seg, sample_rate, seg.sample_width)
|
| 342 |
+
x = np.array(seg.get_array_of_samples(), dtype=np.float32)
|
| 343 |
+
stereo = x.reshape(-1, 2)
|
| 344 |
+
db = 20 * np.log10(np.abs(stereo) + 1e-10)
|
| 345 |
+
mask = db > noise_threshold
|
| 346 |
+
stereo = stereo * mask
|
| 347 |
+
L, R = stereo[:, 0], stereo[:, 1]
|
| 348 |
+
l_rms = np.sqrt(np.mean(L[L != 0] ** 2)) if np.any(L != 0) else 0
|
| 349 |
+
r_rms = np.sqrt(np.mean(R[R != 0] ** 2)) if np.any(R != 0) else 0
|
| 350 |
+
if l_rms > 0 and r_rms > 0:
|
| 351 |
+
avg = (l_rms + r_rms) / 2
|
| 352 |
+
stereo[:, 0] *= (avg / l_rms)
|
| 353 |
+
stereo[:, 1] *= (avg / r_rms)
|
| 354 |
+
out = stereo.flatten().astype(np.int32 if seg.sample_width == 3 else np.int16)
|
| 355 |
+
if len(out) % 2 != 0:
|
| 356 |
+
out = out[:-1]
|
| 357 |
+
return AudioSegment(out.tobytes(), frame_rate=sample_rate, sample_width=seg.sample_width, channels=2)
|
| 358 |
+
except Exception:
|
| 359 |
+
return seg
|
| 360 |
+
|
| 361 |
+
def apply_noise_gate(seg: AudioSegment, threshold_db=-80, sample_rate=48000) -> AudioSegment:
|
| 362 |
+
try:
|
| 363 |
+
seg = ensure_stereo(seg, sample_rate, seg.sample_width)
|
| 364 |
+
x = np.array(seg.get_array_of_samples(), dtype=np.float32)
|
| 365 |
+
stereo = x.reshape(-1, 2)
|
| 366 |
+
for _ in range(2):
|
| 367 |
+
db = 20 * np.log10(np.abs(stereo) + 1e-10)
|
| 368 |
+
mask = db > threshold_db
|
| 369 |
+
stereo = stereo * mask
|
| 370 |
+
out = stereo.flatten().astype(np.int32 if seg.sample_width == 3 else np.int16)
|
| 371 |
+
if len(out) % 2 != 0:
|
| 372 |
+
out = out[:-1]
|
| 373 |
+
return AudioSegment(out.tobytes(), frame_rate=sample_rate, sample_width=seg.sample_width, channels=2)
|
| 374 |
+
except Exception:
|
| 375 |
+
return seg
|
| 376 |
+
|
| 377 |
+
def apply_eq(seg: AudioSegment, sample_rate=48000) -> AudioSegment:
|
| 378 |
+
try:
|
| 379 |
+
seg = ensure_stereo(seg, sample_rate, seg.sample_width)
|
| 380 |
+
seg = seg.high_pass_filter(20).low_pass_filter(8000)
|
| 381 |
+
seg = seg - 3
|
| 382 |
+
seg = seg - 3
|
| 383 |
+
seg = seg - 10
|
| 384 |
+
return seg
|
| 385 |
+
except Exception:
|
| 386 |
+
return seg
|
| 387 |
+
|
| 388 |
+
def apply_fade(seg: AudioSegment, fade_in_ms=500, fade_out_ms=800) -> AudioSegment:
|
| 389 |
+
try:
|
| 390 |
+
seg = ensure_stereo(seg, seg.frame_rate, seg.sample_width)
|
| 391 |
+
return seg.fade_in(fade_in_ms).fade_out(fade_out_ms)
|
| 392 |
+
except Exception:
|
| 393 |
+
return seg
|
| 394 |
+
|
| 395 |
+
def _export_tensor_to_segment(audio: torch.Tensor, sr: int, bit_depth: int) -> Optional[AudioSegment]:
|
| 396 |
+
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
| 397 |
+
tmp_path = tmp.name
|
| 398 |
+
tmp.close()
|
| 399 |
+
try:
|
| 400 |
+
torchaudio.save(tmp_path, audio, sr, bits_per_sample=bit_depth)
|
| 401 |
+
with open(tmp_path, "rb") as f:
|
| 402 |
+
mm = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ)
|
| 403 |
+
seg = AudioSegment.from_wav(tmp_path)
|
| 404 |
+
mm.close()
|
| 405 |
+
return seg
|
| 406 |
+
except Exception as e:
|
| 407 |
+
logger.error(f"export tensor -> segment failed: {e}")
|
| 408 |
+
return None
|
| 409 |
+
finally:
|
| 410 |
+
try:
|
| 411 |
+
if os.path.exists(tmp_path): os.unlink(tmp_path)
|
| 412 |
+
except OSError:
|
| 413 |
+
pass
|
| 414 |
+
|
| 415 |
+
def _crossfade(seg_a: AudioSegment, seg_b: AudioSegment, overlap_ms: int, sr: int, bit_depth: int) -> AudioSegment:
|
| 416 |
+
try:
|
| 417 |
+
seg_a = ensure_stereo(seg_a, sr, seg_a.sample_width)
|
| 418 |
+
seg_b = ensure_stereo(seg_b, sr, seg_b.sample_width)
|
| 419 |
+
if overlap_ms <= 0 or len(seg_a) < overlap_ms or len(seg_b) < overlap_ms:
|
| 420 |
+
return seg_a + seg_b
|
| 421 |
+
|
| 422 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as a_wav, \
|
| 423 |
+
tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as b_wav, \
|
| 424 |
+
tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as cf_wav:
|
| 425 |
+
a_path = a_wav.name
|
| 426 |
+
b_path = b_wav.name
|
| 427 |
+
cf_path = cf_wav.name
|
| 428 |
+
|
| 429 |
+
seg_a[-overlap_ms:].export(a_path, format="wav")
|
| 430 |
+
seg_b[:overlap_ms].export(b_path, format="wav")
|
| 431 |
+
a, sr_a = torchaudio.load(a_path)
|
| 432 |
+
b, sr_b = torchaudio.load(b_path)
|
| 433 |
+
if sr_a != sr:
|
| 434 |
+
a = torchaudio.functional.resample(a, sr_a, sr, lowpass_filter_width=64)
|
| 435 |
+
if sr_b != sr:
|
| 436 |
+
b = torchaudio.functional.resample(b, sr_b, sr, lowpass_filter_width=64)
|
| 437 |
+
n = min(a.shape[1], b.shape[1])
|
| 438 |
+
n = n - (n % 2)
|
| 439 |
+
if n <= 0:
|
| 440 |
+
for p in (a_path, b_path, cf_path):
|
| 441 |
+
try:
|
| 442 |
+
if os.path.exists(p): os.unlink(p)
|
| 443 |
+
except OSError:
|
| 444 |
+
pass
|
| 445 |
+
return seg_a + seg_b
|
| 446 |
+
aw = a[:, :n].to(torch.float32)
|
| 447 |
+
bw = b[:, :n].to(torch.float32)
|
| 448 |
+
hann = torch.hann_window(n, periodic=False)
|
| 449 |
+
out = (aw * hann.flip(0) + bw * hann).clamp(-1.0, 1.0)
|
| 450 |
+
scale = (2**23 if bit_depth == 24 else 32767)
|
| 451 |
+
out_i = (out * scale).to(torch.int32 if bit_depth == 24 else torch.int16)
|
| 452 |
+
torchaudio.save(cf_path, out_i, sr, bits_per_sample=bit_depth)
|
| 453 |
+
blended = AudioSegment.from_wav(cf_path)
|
| 454 |
+
res = seg_a[:-overlap_ms] + blended + seg_b[overlap_ms:]
|
| 455 |
+
for p in (a_path, b_path, cf_path):
|
| 456 |
+
try:
|
| 457 |
+
if os.path.exists(p): os.unlink(p)
|
| 458 |
+
except OSError:
|
| 459 |
+
pass
|
| 460 |
+
return res
|
| 461 |
+
except Exception as e:
|
| 462 |
+
logger.error(f"crossfade failed: {e}")
|
| 463 |
+
return seg_a + seg_b
|
| 464 |
+
|
| 465 |
+
# ======================================================================================
|
| 466 |
+
# GENERATION (30s chunks -> seamless)
|
| 467 |
+
# ======================================================================================
|
| 468 |
+
|
| 469 |
+
def generate_music(
|
| 470 |
+
instrumental_prompt: str,
|
| 471 |
+
cfg_scale: float,
|
| 472 |
+
top_k: int,
|
| 473 |
+
top_p: float,
|
| 474 |
+
temperature: float,
|
| 475 |
+
total_duration: int,
|
| 476 |
+
bpm: int,
|
| 477 |
+
drum_beat: str,
|
| 478 |
+
synthesizer: str,
|
| 479 |
+
rhythmic_steps: str,
|
| 480 |
+
bass_style: str,
|
| 481 |
+
guitar_style: str,
|
| 482 |
+
target_volume: float,
|
| 483 |
+
preset: str,
|
| 484 |
+
max_steps_ignored: str,
|
| 485 |
+
vram_status_text: str,
|
| 486 |
+
bitrate: str,
|
| 487 |
+
output_sample_rate: str,
|
| 488 |
+
bit_depth: str
|
| 489 |
+
) -> Tuple[Optional[str], str, str]:
|
| 490 |
+
if not instrumental_prompt or not instrumental_prompt.strip():
|
| 491 |
+
return None, "β οΈ Enter a valid prompt.", vram_status_text
|
| 492 |
+
|
| 493 |
+
try:
|
| 494 |
+
out_sr = int(output_sample_rate)
|
| 495 |
+
bit_depth_int = int(bit_depth)
|
| 496 |
+
sample_width = 3 if bit_depth_int == 24 else 2
|
| 497 |
+
except Exception:
|
| 498 |
+
return None, "β Invalid output SR or bit depth.", vram_status_text
|
| 499 |
+
|
| 500 |
+
if not check_disk_space("."):
|
| 501 |
+
return None, "β οΈ Low disk space (<1GB).", vram_status_text
|
| 502 |
+
|
| 503 |
+
CHUNK = 30
|
| 504 |
+
total_duration = max(30, min(int(total_duration), 180))
|
| 505 |
+
chunks = math.ceil(total_duration / CHUNK)
|
| 506 |
+
PROCESS_SR = 48000
|
| 507 |
+
OVERLAP = 0.20
|
| 508 |
+
|
| 509 |
+
musicgen_model.set_generation_params(
|
| 510 |
+
duration=CHUNK,
|
| 511 |
+
use_sampling=True,
|
| 512 |
+
top_k=int(top_k),
|
| 513 |
+
top_p=float(top_p),
|
| 514 |
+
temperature=float(temperature),
|
| 515 |
+
cfg_coef=float(cfg_scale),
|
| 516 |
+
two_step_cfg=False,
|
| 517 |
+
)
|
| 518 |
+
|
| 519 |
+
vram_status_text = f"Start VRAM: {torch.cuda.memory_allocated() / 1024**2:.2f} MB"
|
| 520 |
+
segments: List[AudioSegment] = []
|
| 521 |
+
|
| 522 |
+
seed = random.randint(0, 2**31 - 1)
|
| 523 |
+
random.seed(seed); np.random.seed(seed)
|
| 524 |
+
torch.manual_seed(seed); torch.cuda.manual_seed_all(seed)
|
| 525 |
+
|
| 526 |
+
for i in range(chunks):
|
| 527 |
+
part = i + 1
|
| 528 |
+
dur = CHUNK if (i < chunks - 1) else (total_duration - CHUNK * (chunks - 1) or CHUNK)
|
| 529 |
+
logger.info(f"Generating chunk {part}/{chunks} ({dur}s)")
|
| 530 |
+
chunk_prompt = instrumental_prompt
|
| 531 |
+
|
| 532 |
+
try:
|
| 533 |
+
with torch.no_grad():
|
| 534 |
+
with autocast(dtype=torch.float16):
|
| 535 |
+
clean_memory()
|
| 536 |
+
if i == 0:
|
| 537 |
+
audio = musicgen_model.generate([chunk_prompt], progress=True)[0].cpu()
|
| 538 |
+
else:
|
| 539 |
+
prev = segments[-1]
|
| 540 |
+
prev = apply_noise_gate(prev, -80, PROCESS_SR)
|
| 541 |
+
prev = balance_stereo(prev, -40, PROCESS_SR)
|
| 542 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tprev:
|
| 543 |
+
prev_path = tprev.name
|
| 544 |
+
prev.export(prev_path, format="wav")
|
| 545 |
+
tail, sr_prev = torchaudio.load(prev_path)
|
| 546 |
+
if sr_prev != PROCESS_SR:
|
| 547 |
+
tail = torchaudio.functional.resample(tail, sr_prev, PROCESS_SR, lowpass_filter_width=64)
|
| 548 |
+
if tail.shape[0] != 2:
|
| 549 |
+
tail = tail.repeat(2, 1)[:, :tail.shape[1]]
|
| 550 |
+
try:
|
| 551 |
+
os.unlink(prev_path)
|
| 552 |
+
except OSError:
|
| 553 |
+
pass
|
| 554 |
+
tail = tail.to(DEVICE)[:, -int(PROCESS_SR * OVERLAP):]
|
| 555 |
+
audio = musicgen_model.generate_continuation(
|
| 556 |
+
prompt=tail,
|
| 557 |
+
prompt_sample_rate=PROCESS_SR,
|
| 558 |
+
descriptions=[chunk_prompt],
|
| 559 |
+
progress=True
|
| 560 |
+
)[0].cpu()
|
| 561 |
+
clean_memory()
|
| 562 |
+
except Exception as e:
|
| 563 |
+
logger.error(f"Chunk {part} generation failed: {e}")
|
| 564 |
+
return None, f"β Failed to generate chunk {part}: {e}", vram_status_text
|
| 565 |
+
|
| 566 |
+
try:
|
| 567 |
+
if audio.shape[0] != 2:
|
| 568 |
+
audio = audio.repeat(2, 1)[:, :audio.shape[1]]
|
| 569 |
+
audio = audio.to(torch.float32)
|
| 570 |
+
audio = torchaudio.functional.resample(audio, 32000, PROCESS_SR, lowpass_filter_width=64)
|
| 571 |
+
seg = _export_tensor_to_segment(audio, PROCESS_SR, bit_depth_int)
|
| 572 |
+
if seg is None:
|
| 573 |
+
return None, f"β Audio conversion failed (chunk {part}).", vram_status_text
|
| 574 |
+
seg = ensure_stereo(seg, PROCESS_SR, sample_width)
|
| 575 |
+
seg = seg - 15
|
| 576 |
+
seg = apply_noise_gate(seg, -80, PROCESS_SR)
|
| 577 |
+
seg = balance_stereo(seg, -40, PROCESS_SR)
|
| 578 |
+
seg = rms_normalize(seg, target_rms_db=target_volume, peak_limit_db=-3.0, sample_rate=PROCESS_SR)
|
| 579 |
+
seg = apply_eq(seg, PROCESS_SR)
|
| 580 |
+
seg = seg[:dur * 1000]
|
| 581 |
+
segments.append(seg)
|
| 582 |
+
del audio
|
| 583 |
+
vram_status_text = f"VRAM after chunk {part}: {torch.cuda.memory_allocated() / 1024**2:.2f} MB"
|
| 584 |
+
except Exception as e:
|
| 585 |
+
logger.error(f"Post-process failed (chunk {part}): {e}")
|
| 586 |
+
return None, f"β Processing error (chunk {part}).", vram_status_text
|
| 587 |
+
|
| 588 |
+
if not segments:
|
| 589 |
+
return None, "β No audio generated.", vram_status_text
|
| 590 |
+
|
| 591 |
+
logger.info("Combining chunks...")
|
| 592 |
+
out = segments[0]
|
| 593 |
+
overlap_ms = int(OVERLAP * 1000)
|
| 594 |
+
for k in range(1, len(segments)):
|
| 595 |
+
out = _crossfade(out, segments[k], overlap_ms, PROCESS_SR, bit_depth_int)
|
| 596 |
+
|
| 597 |
+
out = out[:total_duration * 1000]
|
| 598 |
+
out = apply_noise_gate(out, -80, PROCESS_SR)
|
| 599 |
+
out = balance_stereo(out, -40, PROCESS_SR)
|
| 600 |
+
out = rms_normalize(out, target_rms_db=target_volume, peak_limit_db=-3.0, sample_rate=PROCESS_SR)
|
| 601 |
+
out = apply_eq(out, PROCESS_SR)
|
| 602 |
+
out = apply_fade(out, 500, 800)
|
| 603 |
+
out = (out - 10).set_frame_rate(out_sr)
|
| 604 |
+
|
| 605 |
+
mp3_path = os.path.join(MP3_DIR, f"ghostai_music_{int(time.time())}.mp3")
|
| 606 |
+
try:
|
| 607 |
+
clean_memory()
|
| 608 |
+
out.export(mp3_path, format="mp3", bitrate=bitrate, tags={"title": "GhostAI Instrumental", "artist": "GhostAI"})
|
| 609 |
+
except Exception as e:
|
| 610 |
+
logger.error(f"MP3 export failed: {e}")
|
| 611 |
+
fb = os.path.join(MP3_DIR, f"ghostai_music_fallback_{int(time.time())}.mp3")
|
| 612 |
+
try:
|
| 613 |
+
out.export(fb, format="mp3", bitrate="128k")
|
| 614 |
+
mp3_path = fb
|
| 615 |
+
except Exception as ee:
|
| 616 |
+
return None, f"β Export failed: {ee}", vram_status_text
|
| 617 |
+
|
| 618 |
+
vram_status_text = f"Final VRAM: {torch.cuda.memory_allocated() / 1024**2:.2f} MB"
|
| 619 |
+
return mp3_path, "β
Done! Seamless unified track rendered.", vram_status_text
|
| 620 |
+
|
| 621 |
+
def generate_music_wrapper(*args):
|
| 622 |
+
try:
|
| 623 |
+
return generate_music(*args)
|
| 624 |
+
finally:
|
| 625 |
+
clean_memory()
|
| 626 |
+
|
| 627 |
+
# ======================================================================================
|
| 628 |
+
# FASTAPI β Status + Settings + Prompts + Render
|
| 629 |
+
# ======================================================================================
|
| 630 |
+
|
| 631 |
+
class RenderRequest(BaseModel):
|
| 632 |
+
instrumental_prompt: str
|
| 633 |
+
cfg_scale: Optional[float] = None
|
| 634 |
+
top_k: Optional[int] = None
|
| 635 |
+
top_p: Optional[float] = None
|
| 636 |
+
temperature: Optional[float] = None
|
| 637 |
+
total_duration: Optional[int] = None
|
| 638 |
+
bpm: Optional[int] = None
|
| 639 |
+
drum_beat: Optional[str] = None
|
| 640 |
+
synthesizer: Optional[str] = None
|
| 641 |
+
rhythmic_steps: Optional[str] = None
|
| 642 |
+
bass_style: Optional[str] = None
|
| 643 |
+
guitar_style: Optional[str] = None
|
| 644 |
+
target_volume: Optional[float] = None
|
| 645 |
+
preset: Optional[str] = None
|
| 646 |
+
max_steps: Optional[int] = None
|
| 647 |
+
bitrate: Optional[str] = None
|
| 648 |
+
output_sample_rate: Optional[str] = None
|
| 649 |
+
bit_depth: Optional[str] = None
|
| 650 |
+
|
| 651 |
+
class SettingsUpdate(BaseModel):
|
| 652 |
+
settings: Dict[str, Any]
|
| 653 |
+
|
| 654 |
+
BUSY_LOCK = threading.Lock()
|
| 655 |
+
BUSY_FLAG = False
|
| 656 |
+
CURRENT_JOB: Dict[str, Any] = {"id": None, "start": None}
|
| 657 |
+
|
| 658 |
+
def set_busy(val: bool, job_id: Optional[str] = None):
|
| 659 |
+
global BUSY_FLAG, CURRENT_JOB
|
| 660 |
+
with BUSY_LOCK:
|
| 661 |
+
BUSY_FLAG = val
|
| 662 |
+
if val:
|
| 663 |
+
CURRENT_JOB["id"] = job_id or f"job_{int(time.time())}"
|
| 664 |
+
CURRENT_JOB["start"] = time.time()
|
| 665 |
+
else:
|
| 666 |
+
CURRENT_JOB["id"] = None
|
| 667 |
+
CURRENT_JOB["start"] = None
|
| 668 |
+
|
| 669 |
+
def is_busy() -> bool:
|
| 670 |
+
with BUSY_LOCK:
|
| 671 |
+
return BUSY_FLAG
|
| 672 |
+
|
| 673 |
+
def job_elapsed() -> float:
|
| 674 |
+
with BUSY_LOCK:
|
| 675 |
+
if CURRENT_JOB["start"] is None:
|
| 676 |
+
return 0.0
|
| 677 |
+
return time.time() - CURRENT_JOB["start"]
|
| 678 |
+
|
| 679 |
+
fastapp = FastAPI(title="GhostAI Music Server", version="1.2")
|
| 680 |
+
fastapp.add_middleware(
|
| 681 |
+
CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"]
|
| 682 |
+
)
|
| 683 |
+
|
| 684 |
+
@fastapp.get("/health")
|
| 685 |
+
def health():
|
| 686 |
+
return {"ok": True, "ts": int(time.time())}
|
| 687 |
+
|
| 688 |
+
@fastapp.get("/status")
|
| 689 |
+
def status():
|
| 690 |
+
return {"busy": is_busy(), "job_id": CURRENT_JOB["id"], "elapsed": job_elapsed()}
|
| 691 |
+
|
| 692 |
+
@fastapp.get("/config")
|
| 693 |
+
def get_config():
|
| 694 |
+
return {"defaults": SETTINGS}
|
| 695 |
+
|
| 696 |
+
@fastapp.post("/settings")
|
| 697 |
+
def set_settings(payload: SettingsUpdate):
|
| 698 |
+
try:
|
| 699 |
+
s = SETTINGS.copy()
|
| 700 |
+
s.update(payload.settings or {})
|
| 701 |
+
save_settings(s)
|
| 702 |
+
for k, v in s.items():
|
| 703 |
+
SETTINGS[k] = v
|
| 704 |
+
return {"ok": True, "saved": s}
|
| 705 |
+
except Exception as e:
|
| 706 |
+
raise HTTPException(status_code=400, detail=str(e))
|
| 707 |
+
|
| 708 |
+
@fastapp.get("/genres")
|
| 709 |
+
def api_genres():
|
| 710 |
+
return {"genres": list_genres()}
|
| 711 |
+
|
| 712 |
+
@fastapp.post("/reload_prompts")
|
| 713 |
+
def api_reload_prompts():
|
| 714 |
+
try:
|
| 715 |
+
PROMPT_CFG.read(PROMPTS_INI)
|
| 716 |
+
return {"ok": True, "genres": list_genres(), "aliases": get_api_aliases()}
|
| 717 |
+
except Exception as e:
|
| 718 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 719 |
+
|
| 720 |
+
@fastapp.get("/prompt/{name}")
|
| 721 |
+
def api_prompt(
|
| 722 |
+
name: str,
|
| 723 |
+
bpm: Optional[int] = Query(None),
|
| 724 |
+
drum_beat: Optional[str] = Query(None),
|
| 725 |
+
synthesizer: Optional[str] = Query(None),
|
| 726 |
+
rhythmic_steps: Optional[str] = Query(None),
|
| 727 |
+
bass_style: Optional[str] = Query(None),
|
| 728 |
+
guitar_style: Optional[str] = Query(None),
|
| 729 |
+
):
|
| 730 |
+
if name not in PROMPT_CFG:
|
| 731 |
+
raise HTTPException(status_code=404, detail=f"Unknown genre '{name}'.")
|
| 732 |
+
prompt = build_prompt_from_section(name, bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style)
|
| 733 |
+
return {"name": name, "prompt": prompt}
|
| 734 |
+
|
| 735 |
+
@fastapp.post("/render")
|
| 736 |
+
def render(req: RenderRequest):
|
| 737 |
+
if is_busy():
|
| 738 |
+
raise HTTPException(status_code=409, detail="Server busy")
|
| 739 |
+
job_id = f"render_{int(time.time())}"
|
| 740 |
+
set_busy(True, job_id)
|
| 741 |
+
try:
|
| 742 |
+
s = SETTINGS.copy()
|
| 743 |
+
for k, v in req.dict().items():
|
| 744 |
+
if v is not None:
|
| 745 |
+
s[k] = v
|
| 746 |
+
mp3, msg, vram = generate_music(
|
| 747 |
+
s.get("instrumental_prompt", req.instrumental_prompt),
|
| 748 |
+
float(s.get("cfg_scale", DEFAULT_SETTINGS["cfg_scale"])),
|
| 749 |
+
int(s.get("top_k", DEFAULT_SETTINGS["top_k"])),
|
| 750 |
+
float(s.get("top_p", DEFAULT_SETTINGS["top_p"])),
|
| 751 |
+
float(s.get("temperature", DEFAULT_SETTINGS["temperature"])),
|
| 752 |
+
int(s.get("total_duration", DEFAULT_SETTINGS["total_duration"])),
|
| 753 |
+
int(s.get("bpm", DEFAULT_SETTINGS["bpm"])),
|
| 754 |
+
str(s.get("drum_beat", DEFAULT_SETTINGS["drum_beat"])),
|
| 755 |
+
str(s.get("synthesizer", DEFAULT_SETTINGS["synthesizer"])),
|
| 756 |
+
str(s.get("rhythmic_steps", DEFAULT_SETTINGS["rhythmic_steps"])),
|
| 757 |
+
str(s.get("bass_style", DEFAULT_SETTINGS["bass_style"])),
|
| 758 |
+
str(s.get("guitar_style", DEFAULT_SETTINGS["guitar_style"])),
|
| 759 |
+
float(s.get("target_volume", DEFAULT_SETTINGS["target_volume"])),
|
| 760 |
+
str(s.get("preset", DEFAULT_SETTINGS["preset"])),
|
| 761 |
+
str(s.get("max_steps", DEFAULT_SETTINGS["max_steps"])),
|
| 762 |
+
"",
|
| 763 |
+
str(s.get("bitrate", DEFAULT_SETTINGS["bitrate"])),
|
| 764 |
+
str(s.get("output_sample_rate", DEFAULT_SETTINGS["output_sample_rate"])),
|
| 765 |
+
str(s.get("bit_depth", DEFAULT_SETTINGS["bit_depth"]))
|
| 766 |
+
)
|
| 767 |
+
if not mp3:
|
| 768 |
+
raise HTTPException(status_code=500, detail=msg)
|
| 769 |
+
return {"ok": True, "job_id": job_id, "path": mp3, "status": msg, "vram": vram}
|
| 770 |
+
finally:
|
| 771 |
+
set_busy(False, None)
|
| 772 |
+
|
| 773 |
+
for path, sec in get_api_aliases().items():
|
| 774 |
+
def _factory(section_name: str):
|
| 775 |
+
def _endpoint(
|
| 776 |
+
bpm: Optional[int] = Query(None),
|
| 777 |
+
drum_beat: Optional[str] = Query(None),
|
| 778 |
+
synthesizer: Optional[str] = Query(None),
|
| 779 |
+
rhythmic_steps: Optional[str] = Query(None),
|
| 780 |
+
bass_style: Optional[str] = Query(None),
|
| 781 |
+
guitar_style: Optional[str] = Query(None),
|
| 782 |
+
):
|
| 783 |
+
prompt = build_prompt_from_section(section_name, bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style)
|
| 784 |
+
return {"name": section_name, "prompt": prompt}
|
| 785 |
+
return _endpoint
|
| 786 |
+
fastapp.add_api_route(path, _factory(sec), methods=["GET"])
|
| 787 |
+
|
| 788 |
+
def _start_fastapi():
|
| 789 |
+
uvicorn.run(fastapp, host="0.0.0.0", port=8555, log_level="info")
|
| 790 |
+
|
| 791 |
+
api_thread = threading.Thread(target=_start_fastapi, daemon=True)
|
| 792 |
+
api_thread.start()
|
| 793 |
+
logger.info("FastAPI server on http://0.0.0.0:8555")
|
| 794 |
+
|
| 795 |
+
# ======================================================================================
|
| 796 |
+
# GRADIO UI
|
| 797 |
+
# ======================================================================================
|
| 798 |
+
|
| 799 |
+
def get_latest_log():
|
| 800 |
+
try:
|
| 801 |
+
if not os.path.exists(LOG_FILE):
|
| 802 |
+
return "No log file found."
|
| 803 |
+
with open(LOG_FILE, "r", encoding="utf-8", errors="ignore") as f:
|
| 804 |
+
return f.read()
|
| 805 |
+
except Exception as e:
|
| 806 |
+
return f"Error reading log file: {e}"
|
| 807 |
+
|
| 808 |
+
css_text = Path(STYLES_CSS).read_text(encoding="utf-8") if os.path.exists(STYLES_CSS) else ""
|
| 809 |
+
|
| 810 |
+
logger.info("Building Gradio UI...")
|
| 811 |
+
with gr.Blocks(css=css_text, analytics_enabled=False, title="GhostAI Music Generator") as demo:
|
| 812 |
+
gr.Markdown("# π΅ GhostAI Music Generator")
|
| 813 |
+
gr.Markdown("Create instrumental tracks with fixed 30s chunking and seamless merges. Accessibility-first UI.")
|
| 814 |
+
|
| 815 |
+
with gr.Row():
|
| 816 |
+
with gr.Column():
|
| 817 |
+
instrumental_prompt = gr.Textbox(
|
| 818 |
+
label="Instrumental Prompt",
|
| 819 |
+
placeholder="Type your prompt or click a Genre button below",
|
| 820 |
+
lines=4,
|
| 821 |
+
value=SETTINGS.get("instrumental_prompt", ""),
|
| 822 |
+
)
|
| 823 |
+
|
| 824 |
+
genre_buttons = []
|
| 825 |
+
genre_sections = list_genres()
|
| 826 |
+
with gr.Group():
|
| 827 |
+
gr.Markdown("### Genres (from prompts.ini)")
|
| 828 |
+
for i in range(0, len(genre_sections), 4):
|
| 829 |
+
with gr.Row():
|
| 830 |
+
for sec in genre_sections[i:i+4]:
|
| 831 |
+
btn = gr.Button(_humanize(sec))
|
| 832 |
+
genre_buttons.append((btn, sec))
|
| 833 |
+
|
| 834 |
+
with gr.Group():
|
| 835 |
+
gr.Markdown("### Generation Settings")
|
| 836 |
+
cfg_scale = gr.Slider(1.0, 10.0, step=0.1, value=float(SETTINGS.get("cfg_scale", 5.8)), label="CFG Scale")
|
| 837 |
+
top_k = gr.Slider(10, 500, step=10, value=int(SETTINGS.get("top_k", 250)), label="Top-K")
|
| 838 |
+
top_p = gr.Slider(0.0, 1.0, step=0.01, value=float(SETTINGS.get("top_p", 0.95)), label="Top-P")
|
| 839 |
+
temperature = gr.Slider(0.1, 2.0, step=0.01, value=float(SETTINGS.get("temperature", 0.90)), label="Temperature")
|
| 840 |
+
total_duration = gr.Dropdown(choices=[30, 60, 90, 120, 180], value=int(SETTINGS.get("total_duration", 60)), label="Song Length (seconds)")
|
| 841 |
+
|
| 842 |
+
bpm = gr.Slider(60, 180, step=1, value=int(SETTINGS.get("bpm", 120)), label="Tempo (BPM)")
|
| 843 |
+
drum_beat = gr.Dropdown(choices=["none", "standard rock", "techno kick", "funk groove", "jazz swing", "orchestral percussion"], value=str(SETTINGS.get("drum_beat", "none")), label="Drum Beat")
|
| 844 |
+
synthesizer = gr.Dropdown(choices=["none", "analog synth", "digital pad", "arpeggiated synth", "strings", "brass", "choir"], value=str(SETTINGS.get("synthesizer", "none")), label="Synthesizer / Section")
|
| 845 |
+
rhythmic_steps = gr.Dropdown(choices=["none", "steady steps", "syncopated steps", "complex steps"], value=str(SETTINGS.get("rhythmic_steps", "none")), label="Rhythmic Steps")
|
| 846 |
+
bass_style = gr.Dropdown(choices=["none", "slap bass", "deep bass", "melodic bass", "contrabass ostinato"], value=str(SETTINGS.get("bass_style", "none")), label="Bass Style")
|
| 847 |
+
guitar_style = gr.Dropdown(choices=["none", "distorted", "clean", "jangle"], value=str(SETTINGS.get("guitar_style", "none")), label="Guitar Style")
|
| 848 |
+
|
| 849 |
+
target_volume = gr.Slider(-30.0, -20.0, step=0.5, value=float(SETTINGS.get("target_volume", -23.0)), label="Target Loudness (dBFS RMS)")
|
| 850 |
+
preset = gr.Dropdown(choices=["default", "rock", "techno", "grunge", "indie", "funk_rock"], value=str(SETTINGS.get("preset", "default")), label="Preset")
|
| 851 |
+
max_steps = gr.Dropdown(choices=[1000, 1200, 1300, 1500], value=int(SETTINGS.get("max_steps", 1500)), label="Max Steps (info)")
|
| 852 |
+
bitrate_state = gr.State(value=str(SETTINGS.get("bitrate", "192k")))
|
| 853 |
+
sample_rate_state = gr.State(value=str(SETTINGS.get("output_sample_rate", "48000")))
|
| 854 |
+
bit_depth_state = gr.State(value=str(SETTINGS.get("bit_depth", "16")))
|
| 855 |
+
|
| 856 |
+
with gr.Row():
|
| 857 |
+
br128 = gr.Button("Bitrate 128k")
|
| 858 |
+
br192 = gr.Button("Bitrate 192k")
|
| 859 |
+
br320 = gr.Button("Bitrate 320k")
|
| 860 |
+
with gr.Row():
|
| 861 |
+
sr22 = gr.Button("SR 22.05k")
|
| 862 |
+
sr44 = gr.Button("SR 44.1k")
|
| 863 |
+
sr48 = gr.Button("SR 48k")
|
| 864 |
+
with gr.Row():
|
| 865 |
+
bd16 = gr.Button("16-bit")
|
| 866 |
+
bd24 = gr.Button("24-bit")
|
| 867 |
+
|
| 868 |
+
gen_btn = gr.Button("Generate Music π")
|
| 869 |
+
clr_btn = gr.Button("Clear π§Ή")
|
| 870 |
+
save_btn = gr.Button("Save Settings πΎ")
|
| 871 |
+
load_btn = gr.Button("Load Settings π")
|
| 872 |
+
reset_btn = gr.Button("Reset Defaults β»οΈ")
|
| 873 |
+
|
| 874 |
+
with gr.Column():
|
| 875 |
+
gr.Markdown("### Output")
|
| 876 |
+
out_audio = gr.Audio(label="Generated Track (saved in ./mp3)", type="filepath")
|
| 877 |
+
status_box = gr.Textbox(label="Status", interactive=False)
|
| 878 |
+
vram_box = gr.Textbox(label="VRAM Usage", interactive=False, value="")
|
| 879 |
+
log_btn = gr.Button("View Log π")
|
| 880 |
+
log_output = gr.Textbox(label="Log Contents", lines=18, interactive=False)
|
| 881 |
+
|
| 882 |
+
def on_genre_click(sec, bpm_v, drum_v, synth_v, steps_v, bass_v, guitar_v):
|
| 883 |
+
return build_prompt_from_section(sec, bpm_v, drum_v, synth_v, steps_v, bass_v, guitar_v)
|
| 884 |
+
|
| 885 |
+
for btn, sec in genre_buttons:
|
| 886 |
+
btn.click(
|
| 887 |
+
on_genre_click,
|
| 888 |
+
inputs=[gr.State(sec), bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style],
|
| 889 |
+
outputs=instrumental_prompt
|
| 890 |
+
)
|
| 891 |
+
|
| 892 |
+
br128.click(lambda: "128k", outputs=bitrate_state)
|
| 893 |
+
br192.click(lambda: "192k", outputs=bitrate_state)
|
| 894 |
+
br320.click(lambda: "320k", outputs=bitrate_state)
|
| 895 |
+
sr22.click(lambda: "22050", outputs=sample_rate_state)
|
| 896 |
+
sr44.click(lambda: "44100", outputs=sample_rate_state)
|
| 897 |
+
sr48.click(lambda: "48000", outputs=sample_rate_state)
|
| 898 |
+
bd16.click(lambda: "16", outputs=bit_depth_state)
|
| 899 |
+
bd24.click(lambda: "24", outputs=bit_depth_state)
|
| 900 |
+
|
| 901 |
+
gen_btn.click(
|
| 902 |
+
generate_music_wrapper,
|
| 903 |
+
inputs=[
|
| 904 |
+
instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, bpm,
|
| 905 |
+
drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style,
|
| 906 |
+
target_volume, preset, max_steps, vram_box, bitrate_state, sample_rate_state, bit_depth_state
|
| 907 |
+
],
|
| 908 |
+
outputs=[out_audio, status_box, vram_box]
|
| 909 |
+
)
|
| 910 |
+
|
| 911 |
+
def clear_inputs():
|
| 912 |
+
s = DEFAULT_SETTINGS.copy()
|
| 913 |
+
return (
|
| 914 |
+
s["instrumental_prompt"], s["cfg_scale"], s["top_k"], s["top_p"], s["temperature"],
|
| 915 |
+
s["total_duration"], s["bpm"], s["drum_beat"], s["synthesizer"], s["rhythmic_steps"],
|
| 916 |
+
s["bass_style"], s["guitar_style"], s["target_volume"], s["preset"], s["max_steps"],
|
| 917 |
+
s["bitrate"], s["output_sample_rate"], s["bit_depth"]
|
| 918 |
+
)
|
| 919 |
+
clr_btn.click(
|
| 920 |
+
clear_inputs,
|
| 921 |
+
outputs=[
|
| 922 |
+
instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, bpm,
|
| 923 |
+
drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, target_volume,
|
| 924 |
+
preset, max_steps, bitrate_state, sample_rate_state, bit_depth_state
|
| 925 |
+
]
|
| 926 |
+
)
|
| 927 |
+
|
| 928 |
+
def _save_action(ip, cs, tk, tp, tt, dur, bpm_v, d, s, rs, b, g, tv, pr, ms, br, sr, bd):
|
| 929 |
+
data = {
|
| 930 |
+
"instrumental_prompt": ip, "cfg_scale": float(cs), "top_k": int(tk), "top_p": float(tp),
|
| 931 |
+
"temperature": float(tt), "total_duration": int(dur), "bpm": int(bpm_v),
|
| 932 |
+
"drum_beat": str(d), "synthesizer": str(s), "rhythmic_steps": str(rs),
|
| 933 |
+
"bass_style": str(b), "guitar_style": str(g), "target_volume": float(tv),
|
| 934 |
+
"preset": str(pr), "max_steps": int(ms), "bitrate": str(br),
|
| 935 |
+
"output_sample_rate": str(sr), "bit_depth": str(bd)
|
| 936 |
+
}
|
| 937 |
+
save_settings(data)
|
| 938 |
+
for k, v in data.items(): SETTINGS[k] = v
|
| 939 |
+
return "β
Settings saved."
|
| 940 |
+
save_btn.click(
|
| 941 |
+
_save_action,
|
| 942 |
+
inputs=[instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, bpm,
|
| 943 |
+
drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, target_volume,
|
| 944 |
+
preset, max_steps, bitrate_state, sample_rate_state, bit_depth_state],
|
| 945 |
+
outputs=status_box
|
| 946 |
+
)
|
| 947 |
+
|
| 948 |
+
def _load_action():
|
| 949 |
+
s = load_settings()
|
| 950 |
+
for k, v in s.items(): SETTINGS[k] = v
|
| 951 |
+
return (
|
| 952 |
+
s["instrumental_prompt"], s["cfg_scale"], s["top_k"], s["top_p"], s["temperature"],
|
| 953 |
+
s["total_duration"], s["bpm"], s["drum_beat"], s["synthesizer"], s["rhythmic_steps"],
|
| 954 |
+
s["bass_style"], s["guitar_style"], s["target_volume"], s["preset"], s["max_steps"],
|
| 955 |
+
s["bitrate"], s["output_sample_rate"], s["bit_depth"],
|
| 956 |
+
"β
Settings loaded."
|
| 957 |
+
)
|
| 958 |
+
load_btn.click(_load_action,
|
| 959 |
+
outputs=[instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, bpm,
|
| 960 |
+
drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, target_volume,
|
| 961 |
+
preset, max_steps, bitrate_state, sample_rate_state, bit_depth_state, status_box]
|
| 962 |
+
)
|
| 963 |
+
|
| 964 |
+
def _reset_action():
|
| 965 |
+
s = DEFAULT_SETTINGS.copy()
|
| 966 |
+
save_settings(s)
|
| 967 |
+
for k, v in s.items(): SETTINGS[k] = v
|
| 968 |
+
return (
|
| 969 |
+
s["instrumental_prompt"], s["cfg_scale"], s["top_k"], s["top_p"], s["temperature"],
|
| 970 |
+
s["total_duration"], s["bpm"], s["drum_beat"], s["synthesizer"], s["rhythmic_steps"],
|
| 971 |
+
s["bass_style"], s["guitar_style"], s["target_volume"], s["preset"], s["max_steps"],
|
| 972 |
+
s["bitrate"], s["output_sample_rate"], s["bit_depth"], "β
Defaults restored."
|
| 973 |
+
)
|
| 974 |
+
reset_btn.click(_reset_action,
|
| 975 |
+
outputs=[instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, bpm,
|
| 976 |
+
drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, target_volume,
|
| 977 |
+
preset, max_steps, bitrate_state, sample_rate_state, bit_depth_state, status_box]
|
| 978 |
+
)
|
| 979 |
+
|
| 980 |
+
log_btn.click(get_latest_log, outputs=log_output)
|
| 981 |
+
|
| 982 |
+
logger.info("Launching Gradio UI at http://0.0.0.0:9999 ...")
|
| 983 |
+
try:
|
| 984 |
+
demo.launch(server_name="0.0.0.0", server_port=9999, share=False, inbrowser=False, show_error=True)
|
| 985 |
+
except Exception as e:
|
| 986 |
+
logger.error(f"Gradio launch failed: {e}")
|
| 987 |
+
logger.error(traceback.format_exc())
|
| 988 |
+
sys.exit(1)
|
public/settings.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"instrumental_prompt": "Instrumental alternative rock by Red Hot Chili Peppers, energetic guitar riffs, funky slap bass, standard rock drums with funk fills, funk-rock energy at 126 BPM, dynamic intro and expressive verse.",
|
| 3 |
+
"cfg_scale": 5.8,
|
| 4 |
+
"top_k": 250,
|
| 5 |
+
"top_p": 0.95,
|
| 6 |
+
"temperature": 0.9,
|
| 7 |
+
"total_duration": 60,
|
| 8 |
+
"bpm": 120,
|
| 9 |
+
"drum_beat": "none",
|
| 10 |
+
"synthesizer": "none",
|
| 11 |
+
"rhythmic_steps": "none",
|
| 12 |
+
"bass_style": "deep bass",
|
| 13 |
+
"guitar_style": "jangle",
|
| 14 |
+
"target_volume": -23.0,
|
| 15 |
+
"preset": "default",
|
| 16 |
+
"max_steps": 1500,
|
| 17 |
+
"bitrate": "192k",
|
| 18 |
+
"output_sample_rate": "48000",
|
| 19 |
+
"bit_depth": "16"
|
| 20 |
+
}
|
public/stablebeta.py
ADDED
|
@@ -0,0 +1,1151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import torchaudio
|
| 4 |
+
import psutil
|
| 5 |
+
import time
|
| 6 |
+
import sys
|
| 7 |
+
import numpy as np
|
| 8 |
+
import gc
|
| 9 |
+
import gradio as gr
|
| 10 |
+
from pydub import AudioSegment
|
| 11 |
+
import soundfile as sf
|
| 12 |
+
import pyloudnorm as pyln
|
| 13 |
+
from audiocraft.models import MusicGen
|
| 14 |
+
from torch.amp import autocast
|
| 15 |
+
import json
|
| 16 |
+
import configparser
|
| 17 |
+
import random
|
| 18 |
+
import string
|
| 19 |
+
import uvicorn
|
| 20 |
+
from fastapi import FastAPI, HTTPException
|
| 21 |
+
from fastapi.responses import FileResponse
|
| 22 |
+
from pydantic import BaseModel
|
| 23 |
+
import multiprocessing
|
| 24 |
+
import re
|
| 25 |
+
import datetime
|
| 26 |
+
import warnings
|
| 27 |
+
|
| 28 |
+
# ==============================
|
| 29 |
+
# Warnings & Multiprocessing
|
| 30 |
+
# ==============================
|
| 31 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
| 32 |
+
multiprocessing.set_start_method('spawn', force=True)
|
| 33 |
+
|
| 34 |
+
# ==============================
|
| 35 |
+
# CUDA / PyTorch Runtime Settings
|
| 36 |
+
# ==============================
|
| 37 |
+
os.environ["TORCH_NN_UTILS_LOG_LEVEL"] = "0"
|
| 38 |
+
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
| 39 |
+
os.environ["CUDA_MODULE_LOADING"] = "LAZY"
|
| 40 |
+
os.environ["TORCH_USE_CUDA_DSA"] = "1"
|
| 41 |
+
# Stronger allocator settings to reduce fragmentation and avoid small splits
|
| 42 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128,garbage_collection_threshold:0.8,expandable_segments:True"
|
| 43 |
+
# Support a range of architectures (Turing/Ampere/Ada)
|
| 44 |
+
os.environ["TORCH_CUDA_ARCH_LIST"] = "7.5;8.0;8.6;8.9"
|
| 45 |
+
|
| 46 |
+
# Prefer TF32 on Ampere+ (perf) β also helps allocator behavior
|
| 47 |
+
try:
|
| 48 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 49 |
+
torch.backends.cudnn.benchmark = True
|
| 50 |
+
except Exception:
|
| 51 |
+
pass
|
| 52 |
+
|
| 53 |
+
# ==============================
|
| 54 |
+
# Version / Device Checks
|
| 55 |
+
# ==============================
|
| 56 |
+
def _parse_version_triplet(s: str):
|
| 57 |
+
m = re.findall(r"\d+", s)
|
| 58 |
+
m = [int(x) for x in m[:3]]
|
| 59 |
+
while len(m) < 3:
|
| 60 |
+
m.append(0)
|
| 61 |
+
return tuple(m)
|
| 62 |
+
|
| 63 |
+
if _parse_version_triplet(torch.__version__) < (2, 0, 0):
|
| 64 |
+
print(f"ERROR: PyTorch {torch.__version__} incompatible. Need >=2.0.0.")
|
| 65 |
+
sys.exit(1)
|
| 66 |
+
|
| 67 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 68 |
+
if device != "cuda":
|
| 69 |
+
print("ERROR: CUDA required. CPU disabled.")
|
| 70 |
+
sys.exit(1)
|
| 71 |
+
|
| 72 |
+
cc_major, cc_minor = torch.cuda.get_device_capability(0)
|
| 73 |
+
if cc_major < 7:
|
| 74 |
+
print(f"ERROR: GPU Compute Capability {torch.cuda.get_device_capability(0)} unsupported. Need >=7.0.")
|
| 75 |
+
sys.exit(1)
|
| 76 |
+
|
| 77 |
+
gpu_name = torch.cuda.get_device_name(0)
|
| 78 |
+
print(f"Using GPU: {gpu_name} (CUDA {torch.version.cuda}, Compute Capability {(cc_major, cc_minor)})")
|
| 79 |
+
|
| 80 |
+
# Choose autocast dtype based on hardware support
|
| 81 |
+
try:
|
| 82 |
+
bf16_supported = torch.cuda.is_bf16_supported()
|
| 83 |
+
except Exception:
|
| 84 |
+
bf16_supported = False
|
| 85 |
+
AUTOCAST_DTYPE = torch.bfloat16 if bf16_supported and cc_major >= 8 else torch.float16
|
| 86 |
+
|
| 87 |
+
# ==============================
|
| 88 |
+
# Resource Monitoring
|
| 89 |
+
# ==============================
|
| 90 |
+
def print_resource_usage(stage: str):
|
| 91 |
+
try:
|
| 92 |
+
alloc = torch.cuda.memory_allocated() / (1024 ** 3)
|
| 93 |
+
reserved = torch.cuda.memory_reserved() / (1024 ** 3)
|
| 94 |
+
except Exception:
|
| 95 |
+
alloc, reserved = 0.0, 0.0
|
| 96 |
+
print(f"--- {stage} ---")
|
| 97 |
+
print(f"GPU Memory: {alloc:.2f} GB allocated, {reserved:.2f} GB reserved")
|
| 98 |
+
print(f"CPU: {psutil.cpu_percent()}% | Memory: {psutil.virtual_memory().percent}%")
|
| 99 |
+
print("---------------")
|
| 100 |
+
|
| 101 |
+
# ==============================
|
| 102 |
+
# Output & Metadata
|
| 103 |
+
# ==============================
|
| 104 |
+
output_dir = "mp3"
|
| 105 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 106 |
+
metadata_file = os.path.join(output_dir, "songs_metadata.json")
|
| 107 |
+
api_status = "idle"
|
| 108 |
+
|
| 109 |
+
# ==============================
|
| 110 |
+
# Prompt Variables
|
| 111 |
+
# ==============================
|
| 112 |
+
prompt_variables = {
|
| 113 |
+
'style': [
|
| 114 |
+
'epic', 'gritty', 'smooth', 'lush', 'raw', 'intimate', 'driving', 'moody',
|
| 115 |
+
'psychedelic', 'uplifting', 'melancholic', 'aggressive', 'dreamy', 'retro',
|
| 116 |
+
'futuristic', 'energetic', 'brooding', 'euphoric', 'jazzy', 'cinematic',
|
| 117 |
+
'somber', 'triumphant', 'mystical', 'grunge', 'ethereal'
|
| 118 |
+
],
|
| 119 |
+
'key': ['C major', 'D major', 'E minor', 'F minor', 'G major', 'A minor', 'B-flat major', 'G minor', 'D minor', 'F major'],
|
| 120 |
+
'bpm': [80, 90, 100, 110, 120, 124, 128, 130, 140, 150, 160, 170, 180],
|
| 121 |
+
'time_signature': ['4/4', '3/4', '6/8'],
|
| 122 |
+
'guitar_style': [
|
| 123 |
+
'raw distorted', 'melodic', 'fuzzy', 'crisp', 'jangly', 'clean', 'twangy',
|
| 124 |
+
'shimmering', 'grunge', 'bluesy', 'slide', 'wah-infused', 'chunky'
|
| 125 |
+
],
|
| 126 |
+
'bass_style': [
|
| 127 |
+
'punchy', 'deep', 'groovy', 'melodic', 'throbbing', 'slappy', 'funky',
|
| 128 |
+
'walking', 'booming', 'resonant', 'subtle'
|
| 129 |
+
],
|
| 130 |
+
'drum_style': [
|
| 131 |
+
'dynamic', 'minimal', 'hard-hitting', 'swinging', 'polyrhythmic', 'brushed',
|
| 132 |
+
'tight', 'loose', 'electronic', 'acoustic', 'retro', 'punchy'
|
| 133 |
+
],
|
| 134 |
+
'drum_feature': [
|
| 135 |
+
'heavy snare', 'crisp cymbals', 'tight kicks', 'syncopated hits', 'rolling toms',
|
| 136 |
+
'ghost notes', 'blast beats'
|
| 137 |
+
],
|
| 138 |
+
'organ_style': [
|
| 139 |
+
'subtle Hammond', 'swirling', 'warm Leslie', 'church', 'gritty', 'vintage',
|
| 140 |
+
'moody'
|
| 141 |
+
],
|
| 142 |
+
'synth_style': [
|
| 143 |
+
'atmospheric', 'bright', 'eerie', 'soaring', 'chopped', 'arpeggiated',
|
| 144 |
+
'pulsing', 'glitchy', 'analog', 'digital', 'layered'
|
| 145 |
+
],
|
| 146 |
+
'vocal_style': [
|
| 147 |
+
'chopped', 'soulful', 'haunting', 'melodic', 'harmonized', 'layered',
|
| 148 |
+
'ethereal', 'gruff', 'breathy'
|
| 149 |
+
],
|
| 150 |
+
'hihat_style': [
|
| 151 |
+
'crisp', 'swinging', 'rapid', 'shuffling', 'open', 'tight', 'stuttered'
|
| 152 |
+
],
|
| 153 |
+
'pad_style': [
|
| 154 |
+
'evolving', 'ambient', 'lush', 'dark', 'shimmering', 'warm', 'icy'
|
| 155 |
+
],
|
| 156 |
+
'kick_style': [
|
| 157 |
+
'deep', 'four-on-the-floor', 'subtle', 'punchy', 'booming', 'clicky'
|
| 158 |
+
],
|
| 159 |
+
'lead_style': [
|
| 160 |
+
'fluid', 'intricate', 'soaring', 'expressive', 'virtuosic', 'minimalist',
|
| 161 |
+
'bluesy', 'lyrical'
|
| 162 |
+
],
|
| 163 |
+
'lead_instrument': [
|
| 164 |
+
'saxophone', 'trumpet', 'guitar', 'flute', 'violin', 'clarinet', 'trombone'
|
| 165 |
+
],
|
| 166 |
+
'piano_style': [
|
| 167 |
+
'expressive Rhodes', 'rapid', 'smooth', 'dramatic', 'stride', 'ambient',
|
| 168 |
+
'classical', 'jazzy', 'sparse'
|
| 169 |
+
],
|
| 170 |
+
'keyboard_style': [
|
| 171 |
+
'ornate', 'delicate', 'virtuosic', 'minimal', 'retro', 'spacey'
|
| 172 |
+
],
|
| 173 |
+
'string_style': [
|
| 174 |
+
'sweeping', 'delicate', 'dramatic', 'lush', 'pizzicato', 'staccato',
|
| 175 |
+
'sustained'
|
| 176 |
+
],
|
| 177 |
+
'brass_style': [
|
| 178 |
+
'bold', 'heroic', 'muted', 'fanfare', 'jazzy', 'smooth'
|
| 179 |
+
],
|
| 180 |
+
'woodwind_style': [
|
| 181 |
+
'subtle', 'fluttering', 'melodic', 'airy', 'reedy', 'expressive'
|
| 182 |
+
],
|
| 183 |
+
'flute_style': [
|
| 184 |
+
'fluttering', 'ornate', 'airy', 'breathy', 'trilling'
|
| 185 |
+
],
|
| 186 |
+
'horn_style': [
|
| 187 |
+
'heroic', 'bold', 'soaring', 'mellow', 'stinging'
|
| 188 |
+
],
|
| 189 |
+
'choir_style': [
|
| 190 |
+
'mystical', 'ethereal', 'dramatic', 'angelic', 'epic', 'somber'
|
| 191 |
+
],
|
| 192 |
+
'sample_style': [
|
| 193 |
+
'jazzy', 'soulful', 'gritty', 'cinematic', 'vinyl', 'lo-fi', 'retro'
|
| 194 |
+
],
|
| 195 |
+
'scratch_style': [
|
| 196 |
+
'crackling vinyl', 'sharp', 'rhythmic', 'chopped', 'transform'
|
| 197 |
+
],
|
| 198 |
+
'snare_style': [
|
| 199 |
+
'crisp', 'booming', 'tight', 'snappy', 'rimshot', 'layered'
|
| 200 |
+
],
|
| 201 |
+
'breakdown_style': [
|
| 202 |
+
'euphoric', 'stripped-down', 'intense', 'ambient', 'glitchy', 'dramatic'
|
| 203 |
+
],
|
| 204 |
+
'intro_bars': [4, 8, 16],
|
| 205 |
+
'verse_bars': [8, 16, 32],
|
| 206 |
+
'chorus_bars': [8, 16],
|
| 207 |
+
'bridge_bars': [4, 8, 16],
|
| 208 |
+
'outro_bars': [8, 16],
|
| 209 |
+
'build_bars': [8, 16, 32],
|
| 210 |
+
'drop_bars': [16, 32],
|
| 211 |
+
'main_bars': [16, 32],
|
| 212 |
+
'breakdown_bars': [8, 16],
|
| 213 |
+
'head_bars': [16, 32],
|
| 214 |
+
'solo_bars': [8, 16, 32],
|
| 215 |
+
'fugue_bars': [16, 32],
|
| 216 |
+
'coda_bars': [8, 16],
|
| 217 |
+
'theme_bars': [16, 32],
|
| 218 |
+
'development_bars': [16, 32],
|
| 219 |
+
'climax_bars': [8, 16],
|
| 220 |
+
'groove_bars': [16, 32],
|
| 221 |
+
'vibe': [
|
| 222 |
+
'raw', 'energetic', 'melancholic', 'hypnotic', 'soulful', 'intimate',
|
| 223 |
+
'virtuosic', 'elegant', 'cinematic', 'gritty', 'nostalgic', 'dark',
|
| 224 |
+
'uplifting', 'bittersweet', 'heroic', 'dreamy', 'aggressive', 'relaxed',
|
| 225 |
+
'futuristic', 'retro', 'mystical', 'triumphant'
|
| 226 |
+
],
|
| 227 |
+
'production_style': [
|
| 228 |
+
'lo-fi', 'warm analog', 'clean digital', 'lush', 'crisp acoustic',
|
| 229 |
+
'polished pop', 'grand orchestral', 'grunge', 'minimalist', 'industrial',
|
| 230 |
+
'vintage'
|
| 231 |
+
]
|
| 232 |
+
}
|
| 233 |
+
|
| 234 |
+
# ==============================
|
| 235 |
+
# Default INI Creation
|
| 236 |
+
# ==============================
|
| 237 |
+
def create_default_genre_prompts_ini(ini_path):
|
| 238 |
+
default_config = configparser.ConfigParser()
|
| 239 |
+
default_config['Prompts'] = {
|
| 240 |
+
'nirvana': '{style} grunge with {guitar_style} guitar, {bass_style} bass, {drum_style} drums, {vibe} vibe in {key} at {bpm} BPM',
|
| 241 |
+
'classic_rock': '{style} classic rock with {guitar_style} guitar, {bass_style} bass, {drum_style} drums, {vibe} vibe in {key} at {bpm} BPM',
|
| 242 |
+
'detroit_techno': '{style} techno with {synth_style} synths, {kick_style} kick, {hihat_style} hi-hats, {vibe} vibe at {bpm} BPM',
|
| 243 |
+
'smooth_jazz': '{style} jazz with {piano_style} piano, {bass_style} bass, {drum_style} drums, {vibe} vibe in {key} at {bpm} BPM',
|
| 244 |
+
'alternative_rock': '{style} alternative rock with {guitar_style} guitar, {bass_style} bass, {drum_style} drums in {key} at {bpm} BPM',
|
| 245 |
+
'deep_house': '{style} deep house with {synth_style} synths, {kick_style} kick, {vibe} vibe at {bpm} BPM',
|
| 246 |
+
'bebop_jazz': '{style} bebop jazz with {piano_style} piano, {bass_style} bass, {drum_style} drums in {key} at {bpm} BPM',
|
| 247 |
+
'baroque_classical': '{style} baroque classical with {string_style} strings, {keyboard_style} harpsichord in {key} at {bpm} BPM',
|
| 248 |
+
'romantic_classical': '{style} romantic classical with {string_style} strings, {piano_style} piano in {key} at {bpm} BPM',
|
| 249 |
+
'boom_bap_hiphop': '{style} boom bap hip-hop with {sample_style} samples, {drum_style} drums, {scratch_style} scratches at {bpm} BPM',
|
| 250 |
+
'trap_hiphop': '{style} trap hip-hop with {synth_style} synths, {kick_style} kick, {snare_style} snare at {bpm} BPM',
|
| 251 |
+
'pop_rock': '{style} pop rock with {guitar_style} guitar, {bass_style} bass, {drum_style} drums in {key} at {bpm} BPM',
|
| 252 |
+
'fusion_jazz': '{style} fusion jazz with {piano_style} piano, {guitar_style} guitar, {drum_style} drums in {key} at {bpm} BPM',
|
| 253 |
+
'edm': '{style} EDM with {synth_style} synths, {kick_style} kick, {vibe} vibe at {bpm} BPM',
|
| 254 |
+
'indie_folk': '{style} indie folk with {guitar_style} guitar, {vocal_style} vocals, {drum_style} drums in {key} at {bpm} BPM',
|
| 255 |
+
'star_wars': '{style} epic orchestral with {brass_style} brass, {string_style} strings, {vibe} vibe in {key} at {bpm} BPM',
|
| 256 |
+
'star_wars_classical': '{style} classical orchestral with {string_style} strings, {horn_style} horns in {key} at {bpm} BPM',
|
| 257 |
+
'wutang': '{style} hip-hop with {sample_style} samples, {drum_style} drums, {scratch_style} scratches at {bpm} BPM',
|
| 258 |
+
'milesdavis': '{style} jazz with {lead_instrument} lead, {piano_style} piano, {bass_style} bass in {key} at {bpm} BPM'
|
| 259 |
+
}
|
| 260 |
+
default_config['BandNames'] = {
|
| 261 |
+
'nirvana': 'Nirvana, Soundgarden',
|
| 262 |
+
'classic_rock': 'Led Zeppelin, The Rolling Stones',
|
| 263 |
+
'detroit_techno': 'Underground Resistance, Jeff Mills',
|
| 264 |
+
'smooth_jazz': 'Pat Metheny, George Benson',
|
| 265 |
+
'alternative_rock': 'Radiohead, Smashing Pumpkins',
|
| 266 |
+
'deep_house': 'Moodymann, Theo Parrish',
|
| 267 |
+
'bebop_jazz': 'Charlie Parker, Dizzy Gillespie',
|
| 268 |
+
'baroque_classical': 'Bach, Vivaldi',
|
| 269 |
+
'romantic_classical': 'Chopin, Liszt',
|
| 270 |
+
'boom_bap_hiphop': 'A Tribe Called Quest, Pete Rock',
|
| 271 |
+
'trap_hiphop': 'Future, Metro Boomin',
|
| 272 |
+
'pop_rock': 'Coldplay, The Killers',
|
| 273 |
+
'fusion_jazz': 'Weather Report, Herbie Hancock',
|
| 274 |
+
'edm': 'Deadmau5, Skrillex',
|
| 275 |
+
'indie_folk': 'Fleet Foxes, Bon Iver',
|
| 276 |
+
'star_wars': 'John Williams',
|
| 277 |
+
'star_wars_classical': 'John Williams',
|
| 278 |
+
'wutang': 'Wu-Tang Clan',
|
| 279 |
+
'milesdavis': 'Miles Davis'
|
| 280 |
+
}
|
| 281 |
+
with open(ini_path, 'w') as f:
|
| 282 |
+
default_config.write(f)
|
| 283 |
+
print(f"Created default {ini_path}")
|
| 284 |
+
|
| 285 |
+
# ==============================
|
| 286 |
+
# CSS Load
|
| 287 |
+
# ==============================
|
| 288 |
+
css_path = "style.css"
|
| 289 |
+
try:
|
| 290 |
+
if not os.path.exists(css_path):
|
| 291 |
+
print(f"ERROR: {css_path} not found. Please create style.css with the required CSS content.")
|
| 292 |
+
sys.exit(1)
|
| 293 |
+
with open(css_path, 'r') as f:
|
| 294 |
+
css = f.read()
|
| 295 |
+
except Exception as e:
|
| 296 |
+
print(f"ERROR: Failed to read {css_path}: {e}. Please ensure style.css exists and is readable.")
|
| 297 |
+
sys.exit(1)
|
| 298 |
+
|
| 299 |
+
# ==============================
|
| 300 |
+
# INI Load
|
| 301 |
+
# ==============================
|
| 302 |
+
config = configparser.ConfigParser()
|
| 303 |
+
ini_path = "genre_prompts.ini"
|
| 304 |
+
try:
|
| 305 |
+
if not os.path.exists(ini_path):
|
| 306 |
+
print(f"WARNING: {ini_path} not found. Creating default INI file.")
|
| 307 |
+
create_default_genre_prompts_ini(ini_path)
|
| 308 |
+
config.read(ini_path)
|
| 309 |
+
if 'Prompts' not in config.sections() or 'BandNames' not in config.sections():
|
| 310 |
+
print(f"WARNING: Invalid {ini_path}. Creating default INI file.")
|
| 311 |
+
create_default_genre_prompts_ini(ini_path)
|
| 312 |
+
config.read(ini_path)
|
| 313 |
+
except Exception as e:
|
| 314 |
+
print(f"ERROR: Failed to read {ini_path}: {e}. Creating default INI file.")
|
| 315 |
+
create_default_genre_prompts_ini(ini_path)
|
| 316 |
+
config.read(ini_path)
|
| 317 |
+
|
| 318 |
+
# ==============================
|
| 319 |
+
# Model Load with Fallback
|
| 320 |
+
# ==============================
|
| 321 |
+
def load_musicgen_with_fallback():
|
| 322 |
+
model_paths = [
|
| 323 |
+
os.getenv("MUSICGEN_MODEL_PATH_LARGE", "/home/ubuntu/musicpack/models/musicgen-large"),
|
| 324 |
+
os.getenv("MUSICGEN_MODEL_PATH_MEDIUM", "/home/ubuntu/musicpack/models/musicgen-medium"),
|
| 325 |
+
os.getenv("MUSICGEN_MODEL_PATH_SMALL", "/home/ubuntu/musicpack/models/musicgen-small"),
|
| 326 |
+
]
|
| 327 |
+
model_names = ["large", "medium", "small"]
|
| 328 |
+
|
| 329 |
+
last_error = None
|
| 330 |
+
for path, name in zip(model_paths, model_names):
|
| 331 |
+
if not path:
|
| 332 |
+
continue
|
| 333 |
+
if not os.path.exists(path):
|
| 334 |
+
print(f"NOTE: Model path not found: {path} (skipping {name})")
|
| 335 |
+
continue
|
| 336 |
+
try:
|
| 337 |
+
print(f"Loading MusicGen {name} model from {path} ...")
|
| 338 |
+
torch.cuda.empty_cache()
|
| 339 |
+
gc.collect()
|
| 340 |
+
with autocast('cuda', dtype=AUTOCAST_DTYPE):
|
| 341 |
+
mdl = MusicGen.get_pretrained(path, device=device)
|
| 342 |
+
print(f"Loaded MusicGen {name}. Sample rate: {mdl.sample_rate}Hz")
|
| 343 |
+
return mdl, name
|
| 344 |
+
except RuntimeError as e:
|
| 345 |
+
last_error = e
|
| 346 |
+
print(f"WARNING: Failed to load {name} model due to: {e}")
|
| 347 |
+
torch.cuda.empty_cache()
|
| 348 |
+
gc.collect()
|
| 349 |
+
continue
|
| 350 |
+
except Exception as e:
|
| 351 |
+
last_error = e
|
| 352 |
+
print(f"WARNING: Failed to load {name} model due to: {e}")
|
| 353 |
+
torch.cuda.empty_cache()
|
| 354 |
+
gc.collect()
|
| 355 |
+
continue
|
| 356 |
+
if last_error:
|
| 357 |
+
print(f"ERROR: All model loads failed. Last error: {last_error}")
|
| 358 |
+
raise SystemExit(1)
|
| 359 |
+
|
| 360 |
+
try:
|
| 361 |
+
musicgen_model, loaded_model_name = load_musicgen_with_fallback()
|
| 362 |
+
# Conservative defaults; can be overridden per-call
|
| 363 |
+
musicgen_model.set_generation_params(
|
| 364 |
+
duration=10,
|
| 365 |
+
use_sampling=True,
|
| 366 |
+
top_k=50,
|
| 367 |
+
top_p=0.0,
|
| 368 |
+
temperature=0.8,
|
| 369 |
+
cfg_coef=3.0,
|
| 370 |
+
two_step_cfg=False
|
| 371 |
+
)
|
| 372 |
+
sample_rate = musicgen_model.sample_rate
|
| 373 |
+
print(f"Model active: {loaded_model_name}. Sample rate: {sample_rate}Hz")
|
| 374 |
+
except SystemExit:
|
| 375 |
+
sys.exit(1)
|
| 376 |
+
|
| 377 |
+
# ==============================
|
| 378 |
+
# Audio Processing Helpers
|
| 379 |
+
# ==============================
|
| 380 |
+
def apply_eq(segment):
|
| 381 |
+
segment = segment.high_pass_filter(60)
|
| 382 |
+
segment = segment.low_pass_filter(12000)
|
| 383 |
+
segment = segment - 2.0
|
| 384 |
+
return segment
|
| 385 |
+
|
| 386 |
+
def apply_limiter(segment, max_db=-6.0, target_lufs=-16.0):
|
| 387 |
+
samples = np.array(segment.get_array_of_samples(), dtype=np.float32) / (2**15)
|
| 388 |
+
if segment.channels == 2:
|
| 389 |
+
samples = samples.reshape(-1, 2)
|
| 390 |
+
meter = pyln.Meter(segment.frame_rate)
|
| 391 |
+
loudness = meter.integrated_loudness(samples)
|
| 392 |
+
normalized_samples = pyln.normalize.loudness(samples, loudness, target_lufs)
|
| 393 |
+
if np.max(np.abs(normalized_samples)) > (10 ** (max_db / 20)):
|
| 394 |
+
normalized_samples *= (10 ** (max_db / 20)) / np.max(np.abs(normalized_samples))
|
| 395 |
+
normalized_samples = (normalized_samples * (2**15)).astype(np.int16)
|
| 396 |
+
segment = AudioSegment(
|
| 397 |
+
normalized_samples.tobytes(),
|
| 398 |
+
frame_rate=segment.frame_rate,
|
| 399 |
+
sample_width=2,
|
| 400 |
+
channels=segment.channels
|
| 401 |
+
)
|
| 402 |
+
del samples, normalized_samples
|
| 403 |
+
gc.collect()
|
| 404 |
+
return segment
|
| 405 |
+
|
| 406 |
+
def apply_fade(segment, fade_in_duration=1000, fade_out_duration=1000):
|
| 407 |
+
segment = segment.fade_in(fade_in_duration)
|
| 408 |
+
segment = segment.fade_out(fade_out_duration)
|
| 409 |
+
return segment
|
| 410 |
+
|
| 411 |
+
# ==============================
|
| 412 |
+
# Names & Metadata
|
| 413 |
+
# ==============================
|
| 414 |
+
made_up_names = [
|
| 415 |
+
'blazepulse', 'shadowrift', 'neonquest', 'thunderclash', 'stargroove',
|
| 416 |
+
'mysticvibe', 'ironspark', 'ghostsurge', 'velvetstorm', 'crimsonrush',
|
| 417 |
+
'duskblitz', 'solarflame', 'nightdrift', 'frostsaga', 'emberwave',
|
| 418 |
+
'coolriff', 'wildpulse', 'echoslash', 'moontide', 'skydive'
|
| 419 |
+
]
|
| 420 |
+
|
| 421 |
+
def extract_song_keyword(prompt):
|
| 422 |
+
if not prompt:
|
| 423 |
+
return random.choice(made_up_names)
|
| 424 |
+
words = re.findall(r'\b\w+\b', prompt.lower())
|
| 425 |
+
for word in words:
|
| 426 |
+
if len(word) <= 15 and word.isalnum():
|
| 427 |
+
return word
|
| 428 |
+
return random.choice(made_up_names)
|
| 429 |
+
|
| 430 |
+
def generate_unique_title(existing_titles, genre, song_keyword, style):
|
| 431 |
+
letters = string.ascii_uppercase
|
| 432 |
+
numbers = string.digits
|
| 433 |
+
max_attempts = 100
|
| 434 |
+
attempt = 0
|
| 435 |
+
while attempt < max_attempts:
|
| 436 |
+
title_base = f"{random.choice(letters)}{random.choice(numbers)}"
|
| 437 |
+
band_names = config['BandNames'].get(genre, "nirvana").split(',')
|
| 438 |
+
band_name = random.choice([name.strip() for name in band_names])
|
| 439 |
+
existing_count = sum(1 for t in existing_titles if t.startswith(title_base) and song_keyword in t and style in t and band_name in t)
|
| 440 |
+
if existing_count == 0:
|
| 441 |
+
return title_base, band_name
|
| 442 |
+
suffix = f"{random.choice(letters)}{random.choice(numbers)}".lower()
|
| 443 |
+
title_base = f"{title_base}_{suffix}"
|
| 444 |
+
attempt += 1
|
| 445 |
+
raise ValueError("Failed to generate unique title after maximum attempts")
|
| 446 |
+
|
| 447 |
+
def update_metadata_storage(metadata):
|
| 448 |
+
try:
|
| 449 |
+
songs_metadata = []
|
| 450 |
+
if os.path.exists(metadata_file):
|
| 451 |
+
with open(metadata_file, 'r') as f:
|
| 452 |
+
songs_metadata = json.load(f)
|
| 453 |
+
songs_metadata.append({
|
| 454 |
+
"title": metadata["title"],
|
| 455 |
+
"filename": metadata["filename"],
|
| 456 |
+
"prompt": metadata.get("prompt", ""),
|
| 457 |
+
"duration": metadata.get("duration", 30),
|
| 458 |
+
"volume_db": metadata.get("volume_db", -24.0),
|
| 459 |
+
"target_lufs": metadata.get("target_lufs", -16.0),
|
| 460 |
+
"timestamp": metadata.get("timestamp", datetime.datetime.now().strftime("%Y%m%d_%H%M%S")),
|
| 461 |
+
"file_path": metadata.get("file_path", ""),
|
| 462 |
+
"sample_rate": metadata.get("sample_rate", musicgen_model.sample_rate),
|
| 463 |
+
"style": metadata.get("style", ""),
|
| 464 |
+
"band_name": metadata.get("band_name", ""),
|
| 465 |
+
"chunk_index": metadata.get("chunk_index", 0)
|
| 466 |
+
})
|
| 467 |
+
with open(metadata_file, 'w') as f:
|
| 468 |
+
json.dump(songs_metadata, f, indent=4)
|
| 469 |
+
except Exception as e:
|
| 470 |
+
print(f"ERROR: Failed to update metadata storage: {e}")
|
| 471 |
+
|
| 472 |
+
def load_renders():
|
| 473 |
+
if not os.path.exists(metadata_file):
|
| 474 |
+
return [], "No renders found."
|
| 475 |
+
try:
|
| 476 |
+
with open(metadata_file, 'r') as f:
|
| 477 |
+
songs_metadata = json.load(f)
|
| 478 |
+
renders = [
|
| 479 |
+
{
|
| 480 |
+
"Title": entry["title"],
|
| 481 |
+
"Filename": entry["filename"],
|
| 482 |
+
"Prompt": entry["prompt"],
|
| 483 |
+
"Duration (s)": entry["duration"],
|
| 484 |
+
"Timestamp": entry["timestamp"],
|
| 485 |
+
"Audio": entry["file_path"],
|
| 486 |
+
"Download": f'<a href="/get-song/{entry["filename"]}" download><button class="download-btn" aria-label="Download {entry["title"]}">β¬οΈ</button></a>',
|
| 487 |
+
"Chunk": entry["chunk_index"]
|
| 488 |
+
}
|
| 489 |
+
for entry in songs_metadata
|
| 490 |
+
]
|
| 491 |
+
return renders, "Renders loaded successfully."
|
| 492 |
+
except Exception as e:
|
| 493 |
+
return [], f"Error loading renders: {e}"
|
| 494 |
+
|
| 495 |
+
# ==============================
|
| 496 |
+
# Prompt Builder
|
| 497 |
+
# ==============================
|
| 498 |
+
def get_genre_prompt(genre):
|
| 499 |
+
base_prompt = config['Prompts'].get(genre, "")
|
| 500 |
+
if not base_prompt:
|
| 501 |
+
base_prompt = "{style} grunge with {guitar_style} guitar, {bass_style} bass, {drum_style} drums, {vibe} vibe in {key} at {bpm} BPM"
|
| 502 |
+
prompt_dict = {
|
| 503 |
+
'style': random.choice(prompt_variables['style']),
|
| 504 |
+
'key': random.choice(prompt_variables['key']),
|
| 505 |
+
'bpm': random.choice(prompt_variables['bpm']),
|
| 506 |
+
'time_signature': random.choice(prompt_variables['time_signature']),
|
| 507 |
+
'guitar_style': random.choice(prompt_variables['guitar_style']),
|
| 508 |
+
'bass_style': random.choice(prompt_variables['bass_style']),
|
| 509 |
+
'drum_style': random.choice(prompt_variables['drum_style']),
|
| 510 |
+
'drum_feature': random.choice(prompt_variables['drum_feature']),
|
| 511 |
+
'organ_style': random.choice(prompt_variables['organ_style']),
|
| 512 |
+
'synth_style': random.choice(prompt_variables['synth_style']),
|
| 513 |
+
'vocal_style': random.choice(prompt_variables['vocal_style']),
|
| 514 |
+
'hihat_style': random.choice(prompt_variables['hihat_style']),
|
| 515 |
+
'pad_style': random.choice(prompt_variables['pad_style']),
|
| 516 |
+
'kick_style': random.choice(prompt_variables['kick_style']),
|
| 517 |
+
'lead_style': random.choice(prompt_variables['lead_style']),
|
| 518 |
+
'lead_instrument': random.choice(prompt_variables['lead_instrument']),
|
| 519 |
+
'piano_style': random.choice(prompt_variables['piano_style']),
|
| 520 |
+
'keyboard_style': random.choice(prompt_variables['keyboard_style']),
|
| 521 |
+
'string_style': random.choice(prompt_variables['string_style']),
|
| 522 |
+
'brass_style': random.choice(prompt_variables['brass_style']),
|
| 523 |
+
'woodwind_style': random.choice(prompt_variables['woodwind_style']),
|
| 524 |
+
'flute_style': random.choice(prompt_variables['flute_style']),
|
| 525 |
+
'horn_style': random.choice(prompt_variables['horn_style']),
|
| 526 |
+
'choir_style': random.choice(prompt_variables['choir_style']),
|
| 527 |
+
'sample_style': random.choice(prompt_variables['sample_style']),
|
| 528 |
+
'scratch_style': random.choice(prompt_variables['scratch_style']),
|
| 529 |
+
'snare_style': random.choice(prompt_variables['snare_style']),
|
| 530 |
+
'breakdown_style': random.choice(prompt_variables['breakdown_style']),
|
| 531 |
+
'intro_bars': random.choice(prompt_variables['intro_bars']),
|
| 532 |
+
'verse_bars': random.choice(prompt_variables['verse_bars']),
|
| 533 |
+
'chorus_bars': random.choice(prompt_variables['chorus_bars']),
|
| 534 |
+
'bridge_bars': random.choice(prompt_variables['bridge_bars']),
|
| 535 |
+
'outro_bars': random.choice(prompt_variables['outro_bars']),
|
| 536 |
+
'build_bars': random.choice(prompt_variables['build_bars']),
|
| 537 |
+
'drop_bars': random.choice(prompt_variables['drop_bars']),
|
| 538 |
+
'main_bars': random.choice(prompt_variables['main_bars']),
|
| 539 |
+
'breakdown_bars': random.choice(prompt_variables['breakdown_bars']),
|
| 540 |
+
'head_bars': random.choice(prompt_variables['head_bars']),
|
| 541 |
+
'solo_bars': random.choice(prompt_variables['solo_bars']),
|
| 542 |
+
'fugue_bars': random.choice(prompt_variables['fugue_bars']),
|
| 543 |
+
'coda_bars': random.choice(prompt_variables['coda_bars']),
|
| 544 |
+
'theme_bars': random.choice(prompt_variables['theme_bars']),
|
| 545 |
+
'development_bars': random.choice(prompt_variables['development_bars']),
|
| 546 |
+
'climax_bars': random.choice(prompt_variables['climax_bars']),
|
| 547 |
+
'groove_bars': random.choice(prompt_variables['groove_bars']),
|
| 548 |
+
'vibe': random.choice(prompt_variables['vibe']),
|
| 549 |
+
'production_style': random.choice(prompt_variables['production_style'])
|
| 550 |
+
}
|
| 551 |
+
try:
|
| 552 |
+
formatted_prompt = base_prompt.format(**prompt_dict)
|
| 553 |
+
words = re.findall(r'\b\w+\b', formatted_prompt.lower())
|
| 554 |
+
val_list = []
|
| 555 |
+
for k, v in prompt_variables.items():
|
| 556 |
+
if isinstance(v, list):
|
| 557 |
+
val_list.extend(v)
|
| 558 |
+
if not any(word in val_list for word in words):
|
| 559 |
+
formatted_prompt = f"{prompt_dict['style']} music with {prompt_dict['guitar_style']} guitar, {prompt_dict['bass_style']} bass, {prompt_dict['drum_style']} drums in {prompt_dict['key']} at {prompt_dict['bpm']} BPM"
|
| 560 |
+
except KeyError:
|
| 561 |
+
formatted_prompt = f"{prompt_dict['style']} music with {prompt_dict['guitar_style']} guitar, {prompt_dict['bass_style']} bass, {prompt_dict['drum_style']} drums in {prompt_dict['key']} at {prompt_dict['bpm']} BPM"
|
| 562 |
+
return formatted_prompt, prompt_dict['style']
|
| 563 |
+
|
| 564 |
+
# ==============================
|
| 565 |
+
# Adaptive Chunk Generation (OOM-safe)
|
| 566 |
+
# ==============================
|
| 567 |
+
def generate_chunk_oom_safe(model, text_prompt, continuation_prompt, cfg_scale, top_k, top_p, temperature, target_duration):
|
| 568 |
+
durations_to_try = [target_duration, 20, 15, 12, 10, 8, 6, 4, 3, 2]
|
| 569 |
+
for dur in durations_to_try:
|
| 570 |
+
try:
|
| 571 |
+
torch.cuda.synchronize()
|
| 572 |
+
torch.cuda.empty_cache()
|
| 573 |
+
model.set_generation_params(
|
| 574 |
+
duration=dur,
|
| 575 |
+
use_sampling=True,
|
| 576 |
+
top_k=int(top_k),
|
| 577 |
+
top_p=float(top_p),
|
| 578 |
+
temperature=float(temperature),
|
| 579 |
+
cfg_coef=float(cfg_scale),
|
| 580 |
+
two_step_cfg=False
|
| 581 |
+
)
|
| 582 |
+
with torch.no_grad():
|
| 583 |
+
with autocast('cuda', dtype=AUTOCAST_DTYPE):
|
| 584 |
+
if continuation_prompt is None:
|
| 585 |
+
# progress=False lowers overhead
|
| 586 |
+
audio_chunk = model.generate([text_prompt], progress=False)[0]
|
| 587 |
+
else:
|
| 588 |
+
audio_chunk = model.generate_continuation(
|
| 589 |
+
continuation_prompt, model.sample_rate, [text_prompt], progress=False
|
| 590 |
+
)[0]
|
| 591 |
+
return audio_chunk, dur
|
| 592 |
+
except RuntimeError as e:
|
| 593 |
+
msg = str(e).lower()
|
| 594 |
+
if "out of memory" in msg or "cuda error" in msg:
|
| 595 |
+
print(f"OOM at duration {dur}s β retrying with smaller chunk...")
|
| 596 |
+
torch.cuda.empty_cache()
|
| 597 |
+
gc.collect()
|
| 598 |
+
continue
|
| 599 |
+
else:
|
| 600 |
+
raise
|
| 601 |
+
raise RuntimeError("Failed to generate audio chunk without CUDA OOM.")
|
| 602 |
+
|
| 603 |
+
# ==============================
|
| 604 |
+
# Generation
|
| 605 |
+
# ==============================
|
| 606 |
+
def generate_music(instrumental_prompt: str, cfg_scale: float, top_k: int, top_p: float, temperature: float, total_duration: int, volume_db: float, genre: str = None):
|
| 607 |
+
global musicgen_model
|
| 608 |
+
global api_status
|
| 609 |
+
api_status = "rendering"
|
| 610 |
+
|
| 611 |
+
if not instrumental_prompt.strip() and not genre:
|
| 612 |
+
instrumental_prompt, style = get_genre_prompt("nirvana")
|
| 613 |
+
elif not instrumental_prompt.strip():
|
| 614 |
+
instrumental_prompt, style = get_genre_prompt(genre)
|
| 615 |
+
else:
|
| 616 |
+
words = re.findall(r'\b\w+\b', instrumental_prompt.lower())
|
| 617 |
+
val_list = []
|
| 618 |
+
for k, v in prompt_variables.items():
|
| 619 |
+
if isinstance(v, list):
|
| 620 |
+
val_list.extend(v)
|
| 621 |
+
if not any(word in val_list for word in words):
|
| 622 |
+
instrumental_prompt, style = get_genre_prompt("nirvana")
|
| 623 |
+
else:
|
| 624 |
+
ek = extract_song_keyword(instrumental_prompt)
|
| 625 |
+
style = ek if ek in prompt_variables['style'] else random.choice(prompt_variables['style'])
|
| 626 |
+
|
| 627 |
+
try:
|
| 628 |
+
start_time = time.time()
|
| 629 |
+
base_chunk_target = 30 # target; adaptive OOM-safe will shrink if needed
|
| 630 |
+
total_duration = max(total_duration, 30)
|
| 631 |
+
remaining = total_duration
|
| 632 |
+
audio_chunks = []
|
| 633 |
+
chunk_paths = []
|
| 634 |
+
continuation_prompt = None
|
| 635 |
+
chunk_index = 0
|
| 636 |
+
|
| 637 |
+
# Titles
|
| 638 |
+
existing_titles = []
|
| 639 |
+
if os.path.exists(metadata_file):
|
| 640 |
+
with open(metadata_file, 'r') as f:
|
| 641 |
+
songs_metadata = json.load(f)
|
| 642 |
+
existing_titles = [entry["title"] for entry in songs_metadata]
|
| 643 |
+
song_keyword = extract_song_keyword(instrumental_prompt)
|
| 644 |
+
title_base, band_name = generate_unique_title(existing_titles, genre if genre else "nirvana", song_keyword, style)
|
| 645 |
+
|
| 646 |
+
# Loop until we render total_duration seconds with adaptive chunks
|
| 647 |
+
while remaining > 0:
|
| 648 |
+
target = min(base_chunk_target, remaining)
|
| 649 |
+
print_resource_usage(f"Before Chunk {chunk_index + 1}")
|
| 650 |
+
try:
|
| 651 |
+
audio_chunk, actual_dur = generate_chunk_oom_safe(
|
| 652 |
+
musicgen_model, instrumental_prompt, continuation_prompt, cfg_scale, top_k, top_p, temperature, target
|
| 653 |
+
)
|
| 654 |
+
audio_chunk = audio_chunk.cpu().to(dtype=torch.float32)
|
| 655 |
+
if audio_chunk.dim() == 1:
|
| 656 |
+
audio_chunk = torch.stack([audio_chunk, audio_chunk], dim=0)
|
| 657 |
+
elif audio_chunk.dim() == 2 and audio_chunk.shape[0] == 1:
|
| 658 |
+
audio_chunk = torch.cat([audio_chunk, audio_chunk], dim=0)
|
| 659 |
+
elif audio_chunk.dim() == 2 and audio_chunk.shape[0] != 2:
|
| 660 |
+
audio_chunk = audio_chunk[:1, :]
|
| 661 |
+
audio_chunk = torch.cat([audio_chunk, audio_chunk], dim=0)
|
| 662 |
+
elif audio_chunk.dim() > 2:
|
| 663 |
+
audio_chunk = audio_chunk.view(2, -1)
|
| 664 |
+
if audio_chunk.shape[0] != 2:
|
| 665 |
+
raise ValueError(f"Expected stereo audio with shape (2, samples), got {audio_chunk.shape}")
|
| 666 |
+
|
| 667 |
+
# Update continuation prompt (use up to last 2 seconds if available)
|
| 668 |
+
samples_per_second = musicgen_model.sample_rate
|
| 669 |
+
tail_sec = 2
|
| 670 |
+
tail_samples = min(int(tail_sec * samples_per_second), audio_chunk.shape[1] - 1 if audio_chunk.shape[1] > 1 else 1)
|
| 671 |
+
if tail_samples > 0:
|
| 672 |
+
continuation_prompt = audio_chunk[:, -tail_samples:].cpu()
|
| 673 |
+
else:
|
| 674 |
+
continuation_prompt = None
|
| 675 |
+
|
| 676 |
+
# Save to temp wav and convert
|
| 677 |
+
temp_wav_path = os.path.join(output_dir, f"temp_{random.randint(100, 999)}_{chunk_index}.wav")
|
| 678 |
+
try:
|
| 679 |
+
torchaudio.save(temp_wav_path, audio_chunk, musicgen_model.sample_rate, bits_per_sample=16)
|
| 680 |
+
final_segment = AudioSegment.from_wav(temp_wav_path)
|
| 681 |
+
finally:
|
| 682 |
+
if os.path.exists(temp_wav_path):
|
| 683 |
+
os.remove(temp_wav_path)
|
| 684 |
+
del audio_chunk
|
| 685 |
+
gc.collect()
|
| 686 |
+
|
| 687 |
+
# Post FX
|
| 688 |
+
print(f"Post-processing chunk {chunk_index + 1} (duration ~{actual_dur}s)...")
|
| 689 |
+
final_segment = apply_eq(final_segment)
|
| 690 |
+
final_segment = apply_limiter(final_segment, max_db=volume_db, target_lufs=-16.0)
|
| 691 |
+
if chunk_index == 0:
|
| 692 |
+
final_segment = final_segment.fade_in(1000)
|
| 693 |
+
# if last chunk, fade out will be added after loop when combining; also safe to fade here if remaining-actual_dur==0
|
| 694 |
+
if remaining - actual_dur <= 0:
|
| 695 |
+
final_segment = final_segment.fade_out(1000)
|
| 696 |
+
|
| 697 |
+
# Export
|
| 698 |
+
mp3_filename = f"{title_base.lower()}_{song_keyword}_{style}_{band_name}_chunk{chunk_index + 1}.mp3"
|
| 699 |
+
mp3_path = os.path.join(output_dir, mp3_filename)
|
| 700 |
+
final_segment.export(
|
| 701 |
+
mp3_path,
|
| 702 |
+
format="mp3",
|
| 703 |
+
bitrate="64k",
|
| 704 |
+
tags={"title": f"{title_base}_Chunk{chunk_index + 1}", "artist": "GhostAI"}
|
| 705 |
+
)
|
| 706 |
+
print(f"Saved chunk {chunk_index + 1} to {mp3_path}")
|
| 707 |
+
audio_chunks.append(final_segment)
|
| 708 |
+
chunk_paths.append(mp3_path)
|
| 709 |
+
|
| 710 |
+
# Metadata
|
| 711 |
+
metadata = {
|
| 712 |
+
"title": f"{title_base}_Chunk{chunk_index + 1}",
|
| 713 |
+
"filename": mp3_filename,
|
| 714 |
+
"prompt": instrumental_prompt,
|
| 715 |
+
"duration": actual_dur,
|
| 716 |
+
"volume_db": volume_db,
|
| 717 |
+
"target_lufs": -16.0,
|
| 718 |
+
"timestamp": datetime.datetime.now().strftime("%Y%m%d_%H%M%S"),
|
| 719 |
+
"file_path": mp3_path,
|
| 720 |
+
"sample_rate": musicgen_model.sample_rate,
|
| 721 |
+
"style": style,
|
| 722 |
+
"band_name": band_name,
|
| 723 |
+
"chunk_index": chunk_index + 1
|
| 724 |
+
}
|
| 725 |
+
update_metadata_storage(metadata)
|
| 726 |
+
|
| 727 |
+
chunk_index += 1
|
| 728 |
+
remaining -= actual_dur
|
| 729 |
+
torch.cuda.empty_cache()
|
| 730 |
+
gc.collect()
|
| 731 |
+
print_resource_usage(f"After Chunk {chunk_index}")
|
| 732 |
+
except Exception as e:
|
| 733 |
+
print(f"ERROR: Failed to process chunk {chunk_index + 1}: {e}")
|
| 734 |
+
api_status = "idle"
|
| 735 |
+
raise
|
| 736 |
+
|
| 737 |
+
# Combine chunks if more than one
|
| 738 |
+
if len(audio_chunks) > 1:
|
| 739 |
+
combined_segment = audio_chunks[0]
|
| 740 |
+
for segment in audio_chunks[1:]:
|
| 741 |
+
combined_segment = combined_segment.append(segment, crossfade=500)
|
| 742 |
+
combined_mp3_filename = f"{title_base.lower()}_{song_keyword}_{style}_{band_name}_combined.mp3"
|
| 743 |
+
combined_mp3_path = os.path.join(output_dir, combined_mp3_filename)
|
| 744 |
+
combined_segment.export(
|
| 745 |
+
combined_mp3_path,
|
| 746 |
+
format="mp3",
|
| 747 |
+
bitrate="64k",
|
| 748 |
+
tags={"title": title_base, "artist": "GhostAI"}
|
| 749 |
+
)
|
| 750 |
+
print(f"Saved combined audio to {combined_mp3_path}")
|
| 751 |
+
metadata = {
|
| 752 |
+
"title": title_base,
|
| 753 |
+
"filename": combined_mp3_filename,
|
| 754 |
+
"prompt": instrumental_prompt,
|
| 755 |
+
"duration": total_duration,
|
| 756 |
+
"volume_db": volume_db,
|
| 757 |
+
"target_lufs": -16.0,
|
| 758 |
+
"timestamp": datetime.datetime.now().strftime("%Y%m%d_%H%M%S"),
|
| 759 |
+
"file_path": combined_mp3_path,
|
| 760 |
+
"sample_rate": musicgen_model.sample_rate,
|
| 761 |
+
"style": style,
|
| 762 |
+
"band_name": band_name,
|
| 763 |
+
"chunk_index": 0
|
| 764 |
+
}
|
| 765 |
+
update_metadata_storage(metadata)
|
| 766 |
+
del combined_segment, audio_chunks
|
| 767 |
+
gc.collect()
|
| 768 |
+
api_status = "idle"
|
| 769 |
+
return combined_mp3_path, "β
Done!", False, gr.update(value=load_renders()[0])
|
| 770 |
+
else:
|
| 771 |
+
# Single chunk only
|
| 772 |
+
print(f"Saved metadata to {metadata_file}")
|
| 773 |
+
del audio_chunks
|
| 774 |
+
gc.collect()
|
| 775 |
+
api_status = "idle"
|
| 776 |
+
return chunk_paths[0], "β
Done!", False, gr.update(value=load_renders()[0])
|
| 777 |
+
|
| 778 |
+
except Exception as e:
|
| 779 |
+
print(f"β Failed: {e}")
|
| 780 |
+
api_status = "idle"
|
| 781 |
+
return None, f"β Failed: {e}", False, gr.update(value=load_renders()[0])
|
| 782 |
+
finally:
|
| 783 |
+
torch.cuda.synchronize()
|
| 784 |
+
torch.cuda.empty_cache()
|
| 785 |
+
gc.collect()
|
| 786 |
+
|
| 787 |
+
def clear_inputs():
|
| 788 |
+
return "", 3.0, 50, 0.0, 0.8, 30, -24.0, False
|
| 789 |
+
|
| 790 |
+
def show_render_wheel():
|
| 791 |
+
return True
|
| 792 |
+
|
| 793 |
+
def set_genre_prompt(genre: str):
|
| 794 |
+
prompt, _ = get_genre_prompt(genre)
|
| 795 |
+
return prompt
|
| 796 |
+
|
| 797 |
+
# ==============================
|
| 798 |
+
# Gradio UI
|
| 799 |
+
# ==============================
|
| 800 |
+
with gr.Blocks(css=css) as demo:
|
| 801 |
+
gr.Markdown("""
|
| 802 |
+
<div class="header-container" role="banner" aria-label="GhostAI Music Generator">
|
| 803 |
+
<h1>GhostAI Music Generator</h1>
|
| 804 |
+
<p>Create Professional Instrumental Tracks</p>
|
| 805 |
+
</div>
|
| 806 |
+
""")
|
| 807 |
+
with gr.Tabs():
|
| 808 |
+
with gr.Tab("Generate", id="generate"):
|
| 809 |
+
with gr.Column(elem_classes="input-container"):
|
| 810 |
+
gr.Markdown("### Instrumental Prompt")
|
| 811 |
+
instrumental_prompt = gr.Textbox(
|
| 812 |
+
label="Instrumental Prompt",
|
| 813 |
+
placeholder="Select a genre or enter a custom prompt (e.g., 'coolriff grunge')",
|
| 814 |
+
lines=4,
|
| 815 |
+
elem_classes="textbox"
|
| 816 |
+
)
|
| 817 |
+
with gr.Row(elem_classes="genre-buttons"):
|
| 818 |
+
classic_rock_btn = gr.Button("Classic Rock", elem_classes="genre-btn")
|
| 819 |
+
alternative_rock_btn = gr.Button("Alternative Rock", elem_classes="genre-btn")
|
| 820 |
+
detroit_techno_btn = gr.Button("Detroit Techno", elem_classes="genre-btn")
|
| 821 |
+
deep_house_btn = gr.Button("Deep House", elem_classes="genre-btn")
|
| 822 |
+
smooth_jazz_btn = gr.Button("Smooth Jazz", elem_classes="genre-btn")
|
| 823 |
+
bebop_jazz_btn = gr.Button("Bebop Jazz", elem_classes="genre-btn")
|
| 824 |
+
baroque_classical_btn = gr.Button("Baroque Classical", elem_classes="genre-btn")
|
| 825 |
+
romantic_classical_btn = gr.Button("Romantic Classical", elem_classes="genre-btn")
|
| 826 |
+
boom_bap_hiphop_btn = gr.Button("Boom Bap Hip-Hop", elem_classes="genre-btn")
|
| 827 |
+
trap_hiphop_btn = gr.Button("Trap Hip-Hop", elem_classes="genre-btn")
|
| 828 |
+
pop_rock_btn = gr.Button("Pop Rock", elem_classes="genre-btn")
|
| 829 |
+
fusion_jazz_btn = gr.Button("Fusion Jazz", elem_classes="genre-btn")
|
| 830 |
+
edm_btn = gr.Button("EDM", elem_classes="genre-btn")
|
| 831 |
+
indie_folk_btn = gr.Button("Indie Folk", elem_classes="genre-btn")
|
| 832 |
+
star_wars_btn = gr.Button("Star Wars Epic", elem_classes="genre-btn")
|
| 833 |
+
star_wars_classical_btn = gr.Button("Star Wars Classical", elem_classes="genre-btn")
|
| 834 |
+
nirvana_btn = gr.Button("Nirvana", elem_classes="genre-btn")
|
| 835 |
+
wutang_btn = gr.Button("Wu-Tang", elem_classes="genre-btn")
|
| 836 |
+
milesdavis_btn = gr.Button("Miles Davis", elem_classes="genre-btn")
|
| 837 |
+
with gr.Column(elem_classes="settings-container"):
|
| 838 |
+
gr.Markdown("### Generation Settings")
|
| 839 |
+
cfg_scale = gr.Slider(
|
| 840 |
+
label="Guidance Scale (CFG)",
|
| 841 |
+
minimum=1.0,
|
| 842 |
+
maximum=10.0,
|
| 843 |
+
value=3.0,
|
| 844 |
+
step=0.1
|
| 845 |
+
)
|
| 846 |
+
top_k = gr.Slider(
|
| 847 |
+
label="Top-K Sampling",
|
| 848 |
+
minimum=10,
|
| 849 |
+
maximum=500,
|
| 850 |
+
value=50,
|
| 851 |
+
step=10
|
| 852 |
+
)
|
| 853 |
+
top_p = gr.Slider(
|
| 854 |
+
label="Top-P Sampling",
|
| 855 |
+
minimum=0.0,
|
| 856 |
+
maximum=1.0,
|
| 857 |
+
value=0.0,
|
| 858 |
+
step=0.1
|
| 859 |
+
)
|
| 860 |
+
temperature = gr.Slider(
|
| 861 |
+
label="Temperature",
|
| 862 |
+
minimum=0.1,
|
| 863 |
+
maximum=2.0,
|
| 864 |
+
value=0.8,
|
| 865 |
+
step=0.1
|
| 866 |
+
)
|
| 867 |
+
total_duration = gr.Slider(
|
| 868 |
+
label="Duration (seconds)",
|
| 869 |
+
minimum=30,
|
| 870 |
+
maximum=300,
|
| 871 |
+
value=30,
|
| 872 |
+
step=10
|
| 873 |
+
)
|
| 874 |
+
volume_db = gr.Slider(
|
| 875 |
+
label="Output Volume (dBFS)",
|
| 876 |
+
minimum=-30.0,
|
| 877 |
+
maximum=0.0,
|
| 878 |
+
value=-24.0,
|
| 879 |
+
step=0.1
|
| 880 |
+
)
|
| 881 |
+
with gr.Row(elem_classes="action-buttons"):
|
| 882 |
+
gen_btn = gr.Button("Generate Music")
|
| 883 |
+
clr_btn = gr.Button("Clear Inputs")
|
| 884 |
+
with gr.Column(elem_classes="output-container"):
|
| 885 |
+
gr.Markdown("### Output")
|
| 886 |
+
render_wheel = gr.HTML('<div class="render-wheel" aria-live="polite">Generating...</div>', label="Rendering Status")
|
| 887 |
+
render_state = gr.State(value=False)
|
| 888 |
+
out_audio = gr.Audio(label="Generated Track", type="filepath", interactive=True, elem_classes="audio-container")
|
| 889 |
+
status = gr.Textbox(label="Status", interactive=False)
|
| 890 |
+
with gr.Tab("Renders", id="renders"):
|
| 891 |
+
with gr.Column(elem_classes="renders-container"):
|
| 892 |
+
gr.Markdown("### Browse Renders")
|
| 893 |
+
renders_table = gr.DataFrame(
|
| 894 |
+
headers=["Title", "Filename", "Prompt", "Duration (s)", "Timestamp", "Audio", "Download", "Chunk"],
|
| 895 |
+
datatype=["str", "str", "str", "number", "str", "audio", "html", "number"],
|
| 896 |
+
interactive=False,
|
| 897 |
+
value=load_renders()[0],
|
| 898 |
+
elem_classes="renders-table"
|
| 899 |
+
)
|
| 900 |
+
renders_status = gr.Textbox(label="Renders Status", interactive=False, value=load_renders()[1])
|
| 901 |
+
|
| 902 |
+
# Button bindings
|
| 903 |
+
classic_rock_btn.click(set_genre_prompt, inputs=[gr.State(value="classic_rock")], outputs=[instrumental_prompt])
|
| 904 |
+
alternative_rock_btn.click(set_genre_prompt, inputs=[gr.State(value="alternative_rock")], outputs=[instrumental_prompt])
|
| 905 |
+
detroit_techno_btn.click(set_genre_prompt, inputs=[gr.State(value="detroit_techno")], outputs=[instrumental_prompt])
|
| 906 |
+
deep_house_btn.click(set_genre_prompt, inputs=[gr.State(value="deep_house")], outputs=[instrumental_prompt])
|
| 907 |
+
smooth_jazz_btn.click(set_genre_prompt, inputs=[gr.State(value="smooth_jazz")], outputs=[instrumental_prompt])
|
| 908 |
+
bebop_jazz_btn.click(set_genre_prompt, inputs=[gr.State(value="bebop_jazz")], outputs=[instrumental_prompt])
|
| 909 |
+
baroque_classical_btn.click(set_genre_prompt, inputs=[gr.State(value="baroque_classical")], outputs=[instrumental_prompt])
|
| 910 |
+
romantic_classical_btn.click(set_genre_prompt, inputs=[gr.State(value="romantic_classical")], outputs=[instrumental_prompt])
|
| 911 |
+
boom_bap_hiphop_btn.click(set_genre_prompt, inputs=[gr.State(value="boom_bap_hiphop")], outputs=[instrumental_prompt])
|
| 912 |
+
trap_hiphop_btn.click(set_genre_prompt, inputs=[gr.State(value="trap_hiphop")], outputs=[instrumental_prompt])
|
| 913 |
+
pop_rock_btn.click(set_genre_prompt, inputs=[gr.State(value="pop_rock")], outputs=[instrumental_prompt])
|
| 914 |
+
fusion_jazz_btn.click(set_genre_prompt, inputs=[gr.State(value="fusion_jazz")], outputs=[instrumental_prompt])
|
| 915 |
+
edm_btn.click(set_genre_prompt, inputs=[gr.State(value="edm")], outputs=[instrumental_prompt])
|
| 916 |
+
indie_folk_btn.click(set_genre_prompt, inputs=[gr.State(value="indie_folk")], outputs=[instrumental_prompt])
|
| 917 |
+
star_wars_btn.click(set_genre_prompt, inputs=[gr.State(value="star_wars")], outputs=[instrumental_prompt])
|
| 918 |
+
star_wars_classical_btn.click(set_genre_prompt, inputs=[gr.State(value="star_wars_classical")], outputs=[instrumental_prompt])
|
| 919 |
+
nirvana_btn.click(set_genre_prompt, inputs=[gr.State(value="nirvana")], outputs=[instrumental_prompt])
|
| 920 |
+
wutang_btn.click(set_genre_prompt, inputs=[gr.State(value="wutang")], outputs=[instrumental_prompt])
|
| 921 |
+
milesdavis_btn.click(set_genre_prompt, inputs=[gr.State(value="milesdavis")], outputs=[instrumental_prompt])
|
| 922 |
+
gen_btn.click(
|
| 923 |
+
fn=show_render_wheel,
|
| 924 |
+
inputs=None,
|
| 925 |
+
outputs=[render_state],
|
| 926 |
+
).then(
|
| 927 |
+
fn=generate_music,
|
| 928 |
+
inputs=[instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, volume_db, gr.State(None)],
|
| 929 |
+
outputs=[out_audio, status, render_state, renders_table],
|
| 930 |
+
show_progress="full"
|
| 931 |
+
)
|
| 932 |
+
clr_btn.click(
|
| 933 |
+
fn=clear_inputs,
|
| 934 |
+
inputs=None,
|
| 935 |
+
outputs=[instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, volume_db, render_state]
|
| 936 |
+
)
|
| 937 |
+
|
| 938 |
+
# ==============================
|
| 939 |
+
# FastAPI
|
| 940 |
+
# ==============================
|
| 941 |
+
app = FastAPI()
|
| 942 |
+
|
| 943 |
+
class MusicRequest(BaseModel):
|
| 944 |
+
prompt: str = None
|
| 945 |
+
duration: int = 30
|
| 946 |
+
volume_db: float = -24.0
|
| 947 |
+
genre: str = None
|
| 948 |
+
|
| 949 |
+
@app.get("/prompts/")
|
| 950 |
+
async def get_prompts():
|
| 951 |
+
global api_status
|
| 952 |
+
try:
|
| 953 |
+
prompts = list(config['Prompts'].keys())
|
| 954 |
+
return {"status": api_status, "prompts": prompts}
|
| 955 |
+
except Exception as e:
|
| 956 |
+
print(f"Error fetching prompts: {e}")
|
| 957 |
+
raise HTTPException(status_code=500, detail=f"Error fetching prompts: {e}")
|
| 958 |
+
|
| 959 |
+
@app.post("/generate-music/")
|
| 960 |
+
async def api_generate_music(request: MusicRequest):
|
| 961 |
+
global api_status
|
| 962 |
+
api_status = "rendering"
|
| 963 |
+
try:
|
| 964 |
+
instrumental_prompt = (
|
| 965 |
+
get_genre_prompt(request.genre)[0] if request.genre else
|
| 966 |
+
request.prompt if request.prompt else
|
| 967 |
+
get_genre_prompt("nirvana")[0]
|
| 968 |
+
)
|
| 969 |
+
style = (
|
| 970 |
+
get_genre_prompt(request.genre)[1] if request.genre else
|
| 971 |
+
extract_song_keyword(request.prompt) if request.prompt and extract_song_keyword(request.prompt) in prompt_variables['style'] else
|
| 972 |
+
get_genre_prompt("nirvana")[1]
|
| 973 |
+
)
|
| 974 |
+
if not instrumental_prompt.strip():
|
| 975 |
+
api_status = "idle"
|
| 976 |
+
raise HTTPException(status_code=400, detail="Invalid prompt or genre")
|
| 977 |
+
|
| 978 |
+
total_duration = max(request.duration, 30)
|
| 979 |
+
remaining = total_duration
|
| 980 |
+
audio_chunks = []
|
| 981 |
+
chunk_paths = []
|
| 982 |
+
continuation_prompt = None
|
| 983 |
+
chunk_index = 0
|
| 984 |
+
|
| 985 |
+
existing_titles = []
|
| 986 |
+
if os.path.exists(metadata_file):
|
| 987 |
+
with open(metadata_file, 'r') as f:
|
| 988 |
+
songs_metadata = json.load(f)
|
| 989 |
+
existing_titles = [entry["title"] for entry in songs_metadata]
|
| 990 |
+
song_keyword = extract_song_keyword(request.prompt if request.prompt else instrumental_prompt)
|
| 991 |
+
title_base, band_name = generate_unique_title(existing_titles, request.genre if request.genre else "nirvana", song_keyword, style)
|
| 992 |
+
|
| 993 |
+
while remaining > 0:
|
| 994 |
+
target = min(30, remaining)
|
| 995 |
+
print_resource_usage(f"Before API Chunk {chunk_index + 1}")
|
| 996 |
+
try:
|
| 997 |
+
audio_chunk, actual_dur = generate_chunk_oom_safe(
|
| 998 |
+
musicgen_model, instrumental_prompt, continuation_prompt, 3.0, 50, 0.0, 0.8, target
|
| 999 |
+
)
|
| 1000 |
+
audio_chunk = audio_chunk.cpu().to(dtype=torch.float32)
|
| 1001 |
+
if audio_chunk.dim() == 1:
|
| 1002 |
+
audio_chunk = torch.stack([audio_chunk, audio_chunk], dim=0)
|
| 1003 |
+
elif audio_chunk.dim() == 2 and audio_chunk.shape[0] == 1:
|
| 1004 |
+
audio_chunk = torch.cat([audio_chunk, audio_chunk], dim=0)
|
| 1005 |
+
elif audio_chunk.dim() == 2 and audio_chunk.shape[0] != 2:
|
| 1006 |
+
audio_chunk = audio_chunk[:1, :]
|
| 1007 |
+
audio_chunk = torch.cat([audio_chunk, audio_chunk], dim=0)
|
| 1008 |
+
elif audio_chunk.dim() > 2:
|
| 1009 |
+
audio_chunk = audio_chunk.view(2, -1)
|
| 1010 |
+
if audio_chunk.shape[0] != 2:
|
| 1011 |
+
raise ValueError(f"Expected stereo audio with shape (2, samples), got {audio_chunk.shape}")
|
| 1012 |
+
|
| 1013 |
+
samples_per_second = musicgen_model.sample_rate
|
| 1014 |
+
tail_sec = 2
|
| 1015 |
+
tail_samples = min(int(tail_sec * samples_per_second), audio_chunk.shape[1] - 1 if audio_chunk.shape[1] > 1 else 1)
|
| 1016 |
+
continuation_prompt = audio_chunk[:, -tail_samples:].cpu() if tail_samples > 0 else None
|
| 1017 |
+
|
| 1018 |
+
temp_wav_path = os.path.join(output_dir, f"temp_{random.randint(100, 999)}_{chunk_index}.wav")
|
| 1019 |
+
try:
|
| 1020 |
+
torchaudio.save(temp_wav_path, audio_chunk, musicgen_model.sample_rate, bits_per_sample=16)
|
| 1021 |
+
final_segment = AudioSegment.from_wav(temp_wav_path)
|
| 1022 |
+
finally:
|
| 1023 |
+
if os.path.exists(temp_wav_path):
|
| 1024 |
+
os.remove(temp_wav_path)
|
| 1025 |
+
del audio_chunk
|
| 1026 |
+
gc.collect()
|
| 1027 |
+
|
| 1028 |
+
final_segment = apply_eq(final_segment)
|
| 1029 |
+
final_segment = apply_limiter(final_segment, max_db=request.volume_db, target_lufs=-16.0)
|
| 1030 |
+
if chunk_index == 0:
|
| 1031 |
+
final_segment = final_segment.fade_in(1000)
|
| 1032 |
+
if remaining - actual_dur <= 0:
|
| 1033 |
+
final_segment = final_segment.fade_out(1000)
|
| 1034 |
+
|
| 1035 |
+
mp3_filename = f"{title_base.lower()}_{song_keyword}_{style}_{band_name}_chunk{chunk_index + 1}.mp3"
|
| 1036 |
+
mp3_path = os.path.join(output_dir, mp3_filename)
|
| 1037 |
+
final_segment.export(
|
| 1038 |
+
mp3_path,
|
| 1039 |
+
format="mp3",
|
| 1040 |
+
bitrate="64k",
|
| 1041 |
+
tags={"title": f"{title_base}_Chunk{chunk_index + 1}", "artist": "GhostAI"}
|
| 1042 |
+
)
|
| 1043 |
+
print(f"Saved API chunk {chunk_index + 1} to {mp3_path}")
|
| 1044 |
+
audio_chunks.append(final_segment)
|
| 1045 |
+
chunk_paths.append(mp3_path)
|
| 1046 |
+
|
| 1047 |
+
metadata = {
|
| 1048 |
+
"title": f"{title_base}_Chunk{chunk_index + 1}",
|
| 1049 |
+
"filename": mp3_filename,
|
| 1050 |
+
"prompt": instrumental_prompt,
|
| 1051 |
+
"duration": actual_dur,
|
| 1052 |
+
"volume_db": request.volume_db,
|
| 1053 |
+
"target_lufs": -16.0,
|
| 1054 |
+
"timestamp": datetime.datetime.now().strftime("%Y%m%d_%H%M%S"),
|
| 1055 |
+
"file_path": mp3_path,
|
| 1056 |
+
"sample_rate": musicgen_model.sample_rate,
|
| 1057 |
+
"style": style,
|
| 1058 |
+
"band_name": band_name,
|
| 1059 |
+
"chunk_index": chunk_index + 1
|
| 1060 |
+
}
|
| 1061 |
+
update_metadata_storage(metadata)
|
| 1062 |
+
|
| 1063 |
+
chunk_index += 1
|
| 1064 |
+
remaining -= actual_dur
|
| 1065 |
+
torch.cuda.empty_cache()
|
| 1066 |
+
gc.collect()
|
| 1067 |
+
print_resource_usage(f"After API Chunk {chunk_index}")
|
| 1068 |
+
except Exception as e:
|
| 1069 |
+
print(f"ERROR: Failed to process API chunk {chunk_index + 1}: {e}")
|
| 1070 |
+
api_status = "idle"
|
| 1071 |
+
raise
|
| 1072 |
+
|
| 1073 |
+
if len(audio_chunks) > 1:
|
| 1074 |
+
combined_segment = audio_chunks[0]
|
| 1075 |
+
for segment in audio_chunks[1:]:
|
| 1076 |
+
combined_segment = combined_segment.append(segment, crossfade=500)
|
| 1077 |
+
combined_mp3_filename = f"{title_base.lower()}_{song_keyword}_{style}_{band_name}_combined.mp3"
|
| 1078 |
+
combined_mp3_path = os.path.join(output_dir, combined_mp3_filename)
|
| 1079 |
+
combined_segment.export(
|
| 1080 |
+
combined_mp3_path,
|
| 1081 |
+
format="mp3",
|
| 1082 |
+
bitrate="64k",
|
| 1083 |
+
tags={"title": title_base, "artist": "GhostAI"}
|
| 1084 |
+
)
|
| 1085 |
+
print(f"Saved combined audio to {combined_mp3_path}")
|
| 1086 |
+
metadata = {
|
| 1087 |
+
"title": title_base,
|
| 1088 |
+
"filename": combined_mp3_filename,
|
| 1089 |
+
"prompt": instrumental_prompt,
|
| 1090 |
+
"duration": total_duration,
|
| 1091 |
+
"volume_db": request.volume_db,
|
| 1092 |
+
"target_lufs": -16.0,
|
| 1093 |
+
"timestamp": datetime.datetime.now().strftime("%Y%m%d_%H%M%S"),
|
| 1094 |
+
"file_path": combined_mp3_path,
|
| 1095 |
+
"sample_rate": musicgen_model.sample_rate,
|
| 1096 |
+
"style": style,
|
| 1097 |
+
"band_name": band_name,
|
| 1098 |
+
"chunk_index": 0
|
| 1099 |
+
}
|
| 1100 |
+
update_metadata_storage(metadata)
|
| 1101 |
+
del combined_segment, audio_chunks
|
| 1102 |
+
gc.collect()
|
| 1103 |
+
api_status = "idle"
|
| 1104 |
+
return FileResponse(combined_mp3_path, media_type="audio/mpeg")
|
| 1105 |
+
else:
|
| 1106 |
+
print(f"Saved metadata to {metadata_file}")
|
| 1107 |
+
del audio_chunks
|
| 1108 |
+
gc.collect()
|
| 1109 |
+
api_status = "idle"
|
| 1110 |
+
return FileResponse(chunk_paths[0], media_type="audio/mpeg")
|
| 1111 |
+
except Exception as e:
|
| 1112 |
+
print(f"Error generating music: {e}")
|
| 1113 |
+
api_status = "idle"
|
| 1114 |
+
raise HTTPException(status_code=500, detail=f"Error generating music: {e}")
|
| 1115 |
+
finally:
|
| 1116 |
+
torch.cuda.synchronize()
|
| 1117 |
+
torch.cuda.empty_cache()
|
| 1118 |
+
gc.collect()
|
| 1119 |
+
|
| 1120 |
+
@app.get("/get-song/{filename}")
|
| 1121 |
+
async def get_song(filename: str):
|
| 1122 |
+
global api_status
|
| 1123 |
+
file_path = os.path.join(output_dir, filename)
|
| 1124 |
+
if not os.path.exists(file_path):
|
| 1125 |
+
print(f"Error: Song file {filename} not found")
|
| 1126 |
+
raise HTTPException(status_code=404, detail="Song file not found")
|
| 1127 |
+
print(f"Serving file: {filename}")
|
| 1128 |
+
return FileResponse(file_path, media_type="audio/mpeg", filename=filename)
|
| 1129 |
+
|
| 1130 |
+
@app.get("/status/")
|
| 1131 |
+
async def get_status():
|
| 1132 |
+
global api_status
|
| 1133 |
+
return {"status": api_status}
|
| 1134 |
+
|
| 1135 |
+
def run_fastapi():
|
| 1136 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
| 1137 |
+
|
| 1138 |
+
# ==============================
|
| 1139 |
+
# Main
|
| 1140 |
+
# ==============================
|
| 1141 |
+
if __name__ == "__main__":
|
| 1142 |
+
fastapi_process = multiprocessing.Process(target=run_fastapi)
|
| 1143 |
+
fastapi_process.start()
|
| 1144 |
+
try:
|
| 1145 |
+
demo.launch(server_name="0.0.0.0", server_port=9999, share=False, inbrowser=True, show_error=True)
|
| 1146 |
+
except Exception as e:
|
| 1147 |
+
print(f"ERROR: Failed to launch Gradio: {e}")
|
| 1148 |
+
fastapi_process.terminate()
|
| 1149 |
+
sys.exit(1)
|
| 1150 |
+
finally:
|
| 1151 |
+
fastapi_process.terminate()
|
public/styles.css
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/* styles.css */
|
| 2 |
+
/* High-contrast, accessible theme (no inline HTML in Python). ADA-focused: focus rings, large targets, readable contrast. */
|
| 3 |
+
|
| 4 |
+
:root { color-scheme: dark; }
|
| 5 |
+
|
| 6 |
+
* { box-sizing: border-box; }
|
| 7 |
+
|
| 8 |
+
body, .gradio-container {
|
| 9 |
+
background: #0B0B0D !important;
|
| 10 |
+
color: #FFFFFF !important;
|
| 11 |
+
font-family: ui-sans-serif, system-ui, -apple-system, Segoe UI, Roboto, Helvetica, Arial, "Apple Color Emoji","Segoe UI Emoji";
|
| 12 |
+
line-height: 1.4;
|
| 13 |
+
}
|
| 14 |
+
|
| 15 |
+
h1, h2, h3, h4, h5, h6, label, p, span {
|
| 16 |
+
color: #FFFFFF !important;
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
.block, .panel, .wrap, .tabs, .tabitem, .form, .group {
|
| 20 |
+
background: #0B0B0D !important;
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
input, textarea, select {
|
| 24 |
+
background: #15151A !important;
|
| 25 |
+
color: #FFFFFF !important;
|
| 26 |
+
border: 1px solid #2B2B33 !important;
|
| 27 |
+
border-radius: 10px !important;
|
| 28 |
+
padding: 10px 12px !important;
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
button {
|
| 32 |
+
background: #1F6FEB !important;
|
| 33 |
+
color: #FFFFFF !important;
|
| 34 |
+
border: 2px solid transparent !important;
|
| 35 |
+
border-radius: 10px !important;
|
| 36 |
+
padding: 12px 14px !important;
|
| 37 |
+
font-weight: 700 !important;
|
| 38 |
+
min-height: 44px; /* touch target */
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
button:hover { background: #2D7BFF !important; }
|
| 42 |
+
button:focus { outline: 3px solid #00C853 !important; outline-offset: 2px; }
|
| 43 |
+
|
| 44 |
+
.group > * + * { margin-top: 8px; }
|
| 45 |
+
.row { gap: 8px; }
|
| 46 |
+
|
| 47 |
+
.audio-wrap, .audio-display, .output-html {
|
| 48 |
+
border: 1px solid #2B2B33 !important;
|
| 49 |
+
border-radius: 10px !important;
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
.slider > input[type="range"] { accent-color: #FFD600 !important; }
|
| 53 |
+
|
| 54 |
+
/* Large labels for readability */
|
| 55 |
+
label { font-size: 16px !important; font-weight: 700 !important; }
|
| 56 |
+
|
| 57 |
+
/* Subtle card border around control groups */
|
| 58 |
+
.group { border: 1px solid #2B2B33; border-radius: 12px; padding: 12px; }
|