GHOSTSONAFB / public /apibinararybuild.py
ghostai1's picture
Update public/apibinararybuild.py
5f8e56d verified
raw
history blame
52.4 kB
# app.py
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# GhostAI Music Generator β€” Release v1.3.3
# Gradio UI + FastAPI server, externalized styles (CSS), prompts (INI), and examples (MD).
# Saves MP3s to ./mp3, single rotating log (max 5MB) in ./logs, colorized console.
import os
import sys
import gc
import re
import json
import time
import mmap
import math
import torch
import random
import logging
import warnings
import traceback
import subprocess
import numpy as np
import torchaudio
import gradio as gr
import gradio_client.utils
import threading
import configparser
from pydub import AudioSegment
from pathlib import Path
from typing import Optional, Tuple, Dict, Any, List
from torch.cuda.amp import autocast
from logging.handlers import RotatingFileHandler
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import FileResponse # <-- added
from pydantic import BaseModel
import uvicorn
from colorama import init as colorama_init, Fore
RELEASE = "v1.3.3"
# ======================================================================================
# PATCHES & RUNTIME
# ======================================================================================
_original_get_type = gradio_client.utils.get_type
def _patched_get_type(schema):
if isinstance(schema, bool):
return "boolean"
return _original_get_type(schema)
gradio_client.utils.get_type = _patched_get_type
warnings.filterwarnings("ignore")
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
BASE_DIR = Path(__file__).parent.resolve()
LOG_DIR = BASE_DIR / "logs"
MP3_DIR = BASE_DIR / "mp3"
LOG_DIR.mkdir(parents=True, exist_ok=True)
MP3_DIR.mkdir(parents=True, exist_ok=True)
LOG_FILE = LOG_DIR / "ghostai_musicgen.log"
logger = logging.getLogger("ghostai-musicgen")
logger.setLevel(logging.DEBUG)
file_handler = RotatingFileHandler(LOG_FILE, maxBytes=5 * 1024 * 1024, backupCount=0, encoding="utf-8")
file_handler.setFormatter(logging.Formatter("%(asctime)s [%(levelname)s] %(message)s"))
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setFormatter(logging.Formatter("%(message)s"))
logger.addHandler(file_handler)
logger.addHandler(console_handler)
colorama_init()
print(f"{Fore.CYAN}GhostAI Music Generator {Fore.MAGENTA}{RELEASE}{Fore.RESET} β€” {Fore.GREEN}Booting...{Fore.RESET}")
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
if DEVICE != "cuda":
print(f"{Fore.RED}CUDA not available. Exiting.{Fore.RESET}")
logger.error("CUDA is required. Exiting.")
sys.exit(1)
gpu_name = torch.cuda.get_device_name(0)
print(f"{Fore.YELLOW}GPU:{Fore.RESET} {gpu_name}")
print(f"{Fore.YELLOW}Precision:{Fore.RESET} fp16 (model) / fp32 (CPU audio ops)")
CSS_FILE = BASE_DIR / "styles.css"
PROMPTS_INI = BASE_DIR / "prompts.ini"
EXAMPLES_MD = BASE_DIR / "examples.md"
SETTINGS_FILE = BASE_DIR / "settings.json"
# ======================================================================================
# SETTINGS (PERSISTED)
# ======================================================================================
DEFAULT_SETTINGS: Dict[str, Any] = {
"cfg_scale": 5.8,
"top_k": 250,
"top_p": 0.95,
"temperature": 0.90,
"total_duration": 60,
"bpm": 120,
"drum_beat": "none",
"synthesizer": "none",
"rhythmic_steps": "none",
"bass_style": "none",
"guitar_style": "none",
"target_volume": -23.0,
"preset": "default",
"max_steps": 1500,
"bitrate": "192k",
"output_sample_rate": "48000",
"bit_depth": "16",
"instrumental_prompt": "",
"style": "custom"
}
def load_settings() -> Dict[str, Any]:
if SETTINGS_FILE.exists():
try:
data = json.loads(SETTINGS_FILE.read_text())
for k, v in DEFAULT_SETTINGS.items():
data.setdefault(k, v)
logger.info("Settings loaded.")
return data
except Exception as e:
logger.error(f"Settings read failed: {e}")
return DEFAULT_SETTINGS.copy()
def save_settings(s: Dict[str, Any]) -> None:
try:
SETTINGS_FILE.write_text(json.dumps(s, indent=2))
logger.info("Settings saved.")
except Exception as e:
logger.error(f"Settings write failed: {e}")
CURRENT_SETTINGS = load_settings()
# ======================================================================================
# VRAM / DISK / MEMORY
# ======================================================================================
def clean_memory() -> Optional[float]:
try:
torch.cuda.empty_cache()
gc.collect()
torch.cuda.ipc_collect()
torch.cuda.synchronize()
vram_mb = torch.cuda.memory_allocated() / 1024**2
logger.debug(f"Memory cleaned. VRAM={vram_mb:.2f} MB")
return vram_mb
except Exception as e:
logger.error(f"clean_memory failed: {e}")
logger.error(traceback.format_exc())
return None
def check_vram():
try:
r = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total", "--format=csv"],
capture_output=True, text=True
)
lines = r.stdout.splitlines()
if len(lines) > 1:
used_mb, total_mb = map(int, re.findall(r"\d+", lines[1]))
free_mb = total_mb - used_mb
logger.info(f"VRAM: used {used_mb} MiB | free {free_mb} MiB | total {total_mb} MiB")
if free_mb < 5000:
procs = subprocess.run(
["nvidia-smi", "--query-compute-apps=pid,used_memory", "--format=csv"],
capture_output=True, text=True
)
logger.info(f"GPU processes:\n{procs.stdout}")
return free_mb
except Exception as e:
logger.error(f"check_vram failed: {e}")
return None
def check_disk_space(path=".") -> bool:
try:
stat = os.statvfs(path)
free_gb = stat.f_bavail * stat.f_frsize / (1024**3)
if free_gb < 1.0:
logger.warning(f"Low disk space: {free_gb:.2f} GB")
return free_gb >= 1.0
except Exception as e:
logger.error(f"Disk space check failed: {e}")
return False
# ======================================================================================
# AUDIO UTILS (CPU)
# ======================================================================================
def ensure_stereo(seg: AudioSegment, sample_rate=48000, sample_width=2) -> AudioSegment:
try:
if seg.channels != 2:
seg = seg.set_channels(2)
if seg.frame_rate != sample_rate:
seg = seg.set_frame_rate(sample_rate)
return seg
except Exception as e:
logger.error(f"ensure_stereo failed: {e}")
return seg
def calculate_rms(seg: AudioSegment) -> float:
try:
samples = np.array(seg.get_array_of_samples(), dtype=np.float32)
return float(np.sqrt(np.mean(samples**2)))
except Exception:
return 0.0
def hard_limit(seg: AudioSegment, limit_db=-3.0, sample_rate=48000) -> AudioSegment:
try:
seg = ensure_stereo(seg, sample_rate, seg.sample_width)
limit = 10 ** (limit_db / 20.0) * (2**23 if seg.sample_width == 3 else 32767)
samples = np.array(seg.get_array_of_samples(), dtype=np.float32)
samples = np.clip(samples, -limit, limit).astype(np.int32 if seg.sample_width == 3 else np.int16)
if len(samples) % 2 != 0:
samples = samples[:-1]
return AudioSegment(
samples.tobytes(),
frame_rate=sample_rate,
sample_width=seg.sample_width,
channels=2
)
except Exception as e:
logger.error(f"hard_limit failed: {e}")
return seg
def rms_normalize(seg: AudioSegment, target_rms_db=-23.0, peak_limit_db=-3.0, sample_rate=48000) -> AudioSegment:
try:
seg = ensure_stereo(seg, sample_rate, seg.sample_width)
target_rms = 10 ** (target_rms_db / 20) * (2**23 if seg.sample_width == 3 else 32767)
current = calculate_rms(seg)
if current > 0:
gain = target_rms / current
seg = seg.apply_gain(20 * np.log10(max(gain, 1e-6)))
return hard_limit(seg, peak_limit_db, sample_rate)
except Exception as e:
logger.error(f"rms_normalize failed: {e}")
return seg
def balance_stereo(seg: AudioSegment, noise_threshold=-40, sample_rate=48000) -> AudioSegment:
try:
seg = ensure_stereo(seg, sample_rate, seg.sample_width)
arr = np.array(seg.get_array_of_samples(), dtype=np.float32)
if seg.channels != 2:
return seg
stereo = arr.reshape(-1, 2)
db = 20 * np.log10(np.abs(stereo) + 1e-10)
mask = db > noise_threshold
stereo = stereo * mask
left, right = stereo[:, 0], stereo[:, 1]
l_rms = np.sqrt(np.mean(left[left != 0] ** 2)) if np.any(left != 0) else 0
r_rms = np.sqrt(np.mean(right[right != 0] ** 2)) if np.any(right != 0) else 0
if l_rms > 0 and r_rms > 0:
avg = (l_rms + r_rms) / 2
stereo[:, 0] *= (avg / l_rms)
stereo[:, 1] *= (avg / r_rms)
out = stereo.flatten().astype(np.int32 if seg.sample_width == 3 else np.int16)
if len(out) % 2 != 0:
out = out[:-1]
return AudioSegment(out.tobytes(), frame_rate=sample_rate, sample_width=seg.sample_width, channels=2)
except Exception as e:
logger.error(f"balance_stereo failed: {e}")
return seg
def apply_noise_gate(seg: AudioSegment, threshold_db=-80, sample_rate=48000) -> AudioSegment:
try:
seg = ensure_stereo(seg, sample_rate, seg.sample_width)
arr = np.array(seg.get_array_of_samples(), dtype=np.float32)
if seg.channels != 2:
return seg
stereo = arr.reshape(-1, 2)
for _ in range(2):
db = 20 * np.log10(np.abs(stereo) + 1e-10)
stereo = stereo * (db > threshold_db)
out = stereo.flatten().astype(np.int32 if seg.sample_width == 3 else np.int16)
if len(out) % 2 != 0:
out = out[:-1]
return AudioSegment(out.tobytes(), frame_rate=sample_rate, sample_width=seg.sample_width, channels=2)
except Exception as e:
logger.error(f"apply_noise_gate failed: {e}")
return seg
def apply_eq(seg: AudioSegment, sample_rate=48000) -> AudioSegment:
try:
seg = ensure_stereo(seg, sample_rate, seg.sample_width)
seg = seg.high_pass_filter(20)
seg = seg.low_pass_filter(8000)
seg = seg - 3
seg = seg - 3
seg = seg - 10
return seg
except Exception as e:
logger.error(f"apply_eq failed: {e}")
return seg
def apply_fade(seg: AudioSegment, fade_in=500, fade_out=800) -> AudioSegment:
try:
seg = ensure_stereo(seg, seg.frame_rate, seg.sample_width)
return seg.fade_in(fade_in).fade_out(fade_out)
except Exception as e:
logger.error(f"apply_fade failed: {e}")
return seg
# ======================================================================================
# PROMPTS (FROM INI) β€” SAFE FORMAT + STYLE-DRIVEN UI CHANGES
# ======================================================================================
class SafeFormatDict(dict):
def __missing__(self, key):
return ""
class StylesConfig:
def __init__(self, path: Path):
self.path = path
self.cfg = configparser.ConfigParser(interpolation=None)
self.mtime = 0.0
self.styles: Dict[str, Dict[str, Any]] = {}
self._load()
def _load(self):
if not self.path.exists():
logger.error(f"prompts.ini not found: {self.path}")
self.cfg = configparser.ConfigParser(interpolation=None)
self.styles = {}
self.mtime = 0.0
return
self.cfg.read(self.path, encoding="utf-8")
self.styles = {}
for sec in self.cfg.sections():
d: Dict[str, Any] = {k: v for k, v in self.cfg.items(sec)}
listish = {
"drum_beat", "synthesizer", "rhythmic_steps", "bass_style", "guitar_style",
"variations", "mood", "genre", "key", "scale", "feel", "instrument",
"lead", "pad", "arp", "drums", "bass", "guitar", "strings", "brass", "woodwinds",
"structure"
}
for key in listish:
if key in d and isinstance(d[key], str):
d[key] = [s.strip() for s in d[key].split(",") if s.strip()]
self.styles[sec] = d
self.mtime = self.path.stat().st_mtime
logger.info(f"Loaded {len(self.styles)} styles from prompts.ini")
def maybe_reload(self):
if self.path.exists():
mt = self.path.stat().st_mtime
if mt != self.mtime:
self._load()
def list_styles(self) -> List[str]:
self.maybe_reload()
return list(self.styles.keys())
def _pick_from_list(self, vals: Any) -> str:
if isinstance(vals, list):
return random.choice(vals) if vals else ""
return str(vals or "")
def build_prompt(
self,
style: str,
bpm: int,
chunk_num: int = 1,
drum_beat: str = "none",
synthesizer: str = "none",
rhythmic_steps: str = "none",
bass_style: str = "none",
guitar_style: str = "none"
) -> str:
self.maybe_reload()
if style not in self.styles:
return ""
s = self.styles[style]
bpm_min = int(s.get("bpm_min", "100"))
bpm_max = int(s.get("bpm_max", "140"))
final_bpm = bpm if bpm != 120 else random.randint(bpm_min, bpm_max)
def choose(field_name: str, incoming: str) -> str:
if incoming and incoming != "none":
return incoming
return self._pick_from_list(s.get(field_name, [])) or ""
d = choose("drum_beat", drum_beat)
syn = choose("synthesizer", synthesizer)
r = choose("rhythmic_steps", rhythmic_steps)
b = choose("bass_style", bass_style)
g = choose("guitar_style", guitar_style)
var_list = s.get("variations", [])
variation = ""
if isinstance(var_list, list) and var_list:
if chunk_num == 1:
variation = random.choice(var_list[: max(1, len(var_list)//2)])
else:
variation = random.choice(var_list)
fields: Dict[str, Any] = {}
for k, v in s.items():
fields[k] = self._pick_from_list(v) if isinstance(v, list) else v
if "structure" in s:
fields["section"] = self._pick_from_list(s["structure"])
fields.update({
"bpm": final_bpm,
"chunk": chunk_num,
"drum": f" {d}" if d else "",
"synth": f" {syn}" if syn else "",
"rhythm": f" {r}" if r else "",
"bass": f" {b}" if b else "",
"guitar": f" {g}" if g else "",
"variation": variation
})
tpl = s.get(
"prompt_template",
"Instrumental track at {bpm} BPM {variation}. {mood} {section} {drum}{bass}{guitar}{synth}{rhythm}"
)
prompt = tpl.format_map(SafeFormatDict(fields))
prompt = re.sub(r"\s{2,}", " ", prompt).strip()
return prompt
def style_defaults_for_ui(self, style: str) -> Dict[str, Any]:
self.maybe_reload()
s = self.styles.get(style, {})
bpm_min = int(s.get("bpm_min", "100"))
bpm_max = int(s.get("bpm_max", "140"))
chosen = {
"bpm": random.randint(bpm_min, bpm_max),
"drum_beat": self._pick_from_list(s.get("drum_beat", [])) or "none",
"synthesizer": self._pick_from_list(s.get("synthesizer", [])) or "none",
"rhythmic_steps": self._pick_from_list(s.get("rhythmic_steps", [])) or "none",
"bass_style": self._pick_from_list(s.get("bass_style", [])) or "none",
"guitar_style": self._pick_from_list(s.get("guitar_style", [])) or "none",
}
for k, v in chosen.items():
if v == "":
chosen[k] = "none"
return chosen
STYLES = StylesConfig(PROMPTS_INI)
# ======================================================================================
# MODEL
# ======================================================================================
try:
from audiocraft.models import MusicGen
except Exception as e:
logger.error("audiocraft is required. pip install audiocraft")
raise
def load_model():
free = check_vram()
if free is not None and free < 5000:
logger.warning("Low free VRAM; consider closing other apps.")
clean_memory()
local_model_path = str(BASE_DIR / "models" / "musicgen-large")
if not os.path.exists(local_model_path):
logger.error(f"Model path missing: {local_model_path}")
sys.exit(1)
logger.info("Loading MusicGen (large)...")
with autocast(dtype=torch.float16):
model = MusicGen.get_pretrained(local_model_path, device=DEVICE)
model.set_generation_params(duration=30, two_step_cfg=False)
logger.info("MusicGen loaded.")
return model
musicgen_model = load_model()
# ======================================================================================
# GENERATION (30s CHUNKS, 60–120s READY)
# ======================================================================================
def _export_torch_to_segment(audio_tensor: torch.Tensor, sample_rate: int, bit_depth_int: int) -> Optional[AudioSegment]:
tmp = f"temp_audio_{int(time.time()*1000)}.wav"
try:
torchaudio.save(tmp, audio_tensor, sample_rate, bits_per_sample=bit_depth_int)
with open(tmp, "rb") as f:
mm = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ)
seg = AudioSegment.from_wav(tmp)
mm.close()
return seg
except Exception as e:
logger.error(f"_export_torch_to_segment failed: {e}")
logger.error(traceback.format_exc())
return None
finally:
try:
if os.path.exists(tmp):
os.remove(tmp)
except OSError:
pass
def _crossfade(seg_a: AudioSegment, seg_b: AudioSegment, overlap_ms: int, sr: int, bit_depth_int: int) -> AudioSegment:
try:
seg_a = ensure_stereo(seg_a, sr, seg_a.sample_width)
seg_b = ensure_stereo(seg_b, sr, seg_b.sample_width)
if overlap_ms <= 0 or len(seg_a) < overlap_ms or len(seg_b) < overlap_ms:
return seg_a + seg_b
prev_wav = f"tmp_prev_{int(time.time()*1000)}.wav"
curr_wav = f"tmp_curr_{int(time.time()*1000)}.wav"
try:
seg_a[-overlap_ms:].export(prev_wav, format="wav")
seg_b[:overlap_ms].export(curr_wav, format="wav")
a_audio, sra = torchaudio.load(prev_wav)
b_audio, srb = torchaudio.load(curr_wav)
if sra != sr:
a_audio = torchaudio.functional.resample(a_audio, sra, sr, lowpass_filter_width=64)
if srb != sr:
b_audio = torchaudio.functional.resample(b_audio, srb, sr, lowpass_filter_width=64)
n = min(a_audio.shape[1], b_audio.shape[1])
n = n - (n % 2)
if n <= 0:
return seg_a + seg_b
a = a_audio[:, :n]
b = b_audio[:, :n]
hann = torch.hann_window(n, periodic=False)
fade_in = hann
fade_out = hann.flip(0)
blended = (a * fade_out + b * fade_in).to(torch.float32).clamp(-1.0, 1.0)
scale = (2**23 if bit_depth_int == 24 else 32767)
blended_i = (blended * scale).to(torch.int32 if bit_depth_int == 24 else torch.int16)
tmpx = f"tmp_cross_{int(time.time()*1000)}.wav"
torchaudio.save(tmpx, blended_i, sr, bits_per_sample=bit_depth_int)
blend_seg = AudioSegment.from_wav(tmpx)
blend_seg = ensure_stereo(blend_seg, sr, blend_seg.sample_width)
result = seg_a[:-overlap_ms] + blend_seg + seg_b[overlap_ms:]
try:
if os.path.exists(tmpx):
os.remove(tmpx)
except OSError:
pass
return result
finally:
for p in [prev_wav, curr_wav]:
try:
if os.path.exists(p):
os.remove(p)
except OSError:
pass
except Exception as e:
logger.error(f"_crossfade failed: {e}")
return seg_a + seg_b
def _slugify_style(style_key: Optional[str]) -> str:
if not style_key:
return "ghostai"
slug = style_key.lower().strip()
slug = re.sub(r"\s+", "_", slug)
slug = re.sub(r"[^a-z0-9_\-]+", "-", slug)
slug = re.sub(r"-{2,}", "-", slug).strip("-")
return slug or "ghostai"
def generate_music(
instrumental_prompt: str,
cfg_scale: float,
top_k: int,
top_p: float,
temperature: float,
total_duration: int,
bpm: int,
drum_beat: str,
synthesizer: str,
rhythmic_steps: str,
bass_style: str,
guitar_style: str,
target_volume: float,
preset: str,
max_steps: str,
vram_status_text: str,
bitrate: str,
output_sample_rate: str,
bit_depth: str,
style_key: Optional[str] = None
) -> Tuple[Optional[str], str, str]:
if not instrumental_prompt.strip():
return None, "⚠️ Enter a prompt.", vram_status_text
try:
out_sr = int(output_sample_rate)
except:
return None, "❌ Invalid sample rate.", vram_status_text
try:
bd = int(bit_depth)
sample_width = 3 if bd == 24 else 2
except:
return None, "❌ Invalid bit depth.", vram_status_text
if not check_disk_space():
return None, "⚠️ Low disk space (<1GB).", vram_status_text
CHUNK_SEC = 30
total_duration = max(30, min(int(total_duration), 120))
num_chunks = math.ceil(total_duration / CHUNK_SEC)
PROCESS_SR = 48000
OVERLAP_SEC = 0.20
seed = random.randint(0, 2**31 - 1)
random.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed_all(seed)
musicgen_model.set_generation_params(
duration=CHUNK_SEC,
use_sampling=True,
top_k=int(top_k),
top_p=float(top_p),
temperature=float(temperature),
cfg_coef=float(cfg_scale),
two_step_cfg=False,
)
vram_status_text = f"Start VRAM: {torch.cuda.memory_allocated() / 1024**2:.2f} MB"
segments: List[AudioSegment] = []
start_time = time.time()
for idx in range(num_chunks):
chunk_idx = idx + 1
dur = CHUNK_SEC if (idx < num_chunks - 1) else (total_duration - CHUNK_SEC * (num_chunks - 1) or CHUNK_SEC)
logger.info(f"Generating chunk {chunk_idx}/{num_chunks} ({dur}s)")
try:
with torch.no_grad():
with autocast(dtype=torch.float16):
clean_memory()
if idx == 0:
audio = musicgen_model.generate([instrumental_prompt], progress=True)[0].cpu()
else:
prev_seg = segments[-1]
prev_seg = apply_noise_gate(prev_seg, threshold_db=-80, sample_rate=PROCESS_SR)
prev_seg = balance_stereo(prev_seg, noise_threshold=-40, sample_rate=PROCESS_SR)
tmp_prev = f"prev_{int(time.time()*1000)}.wav"
try:
prev_seg.export(tmp_prev, format="wav")
prev_audio, prev_sr = torchaudio.load(tmp_prev)
if prev_sr != PROCESS_SR:
prev_audio = torchaudio.functional.resample(prev_audio, prev_sr, PROCESS_SR, lowpass_filter_width=64)
if prev_audio.shape[0] != 2:
prev_audio = prev_audio.repeat(2, 1)[:, :prev_audio.shape[1]]
prev_audio = prev_audio.to(DEVICE)
tail = prev_audio[:, -int(PROCESS_SR * OVERLAP_SEC):]
audio = musicgen_model.generate_continuation(
prompt=tail,
prompt_sample_rate=PROCESS_SR,
descriptions=[instrumental_prompt],
progress=True
)[0].cpu()
del prev_audio, tail
finally:
try:
if os.path.exists(tmp_prev):
os.remove(tmp_prev)
except OSError:
pass
clean_memory()
except Exception as e:
logger.error(f"Chunk {chunk_idx} generation failed: {e}")
logger.error(traceback.format_exc())
return None, f"❌ Generate failed at chunk {chunk_idx}.", vram_status_text
try:
if audio.shape[0] != 2:
audio = audio.repeat(2, 1)[:, :audio.shape[1]]
audio = audio.to(dtype=torch.float32)
audio = torchaudio.functional.resample(audio, 32000, PROCESS_SR, lowpass_filter_width=64)
seg = _export_torch_to_segment(audio, PROCESS_SR, bd)
if seg is None:
return None, f"❌ Convert failed chunk {chunk_idx}.", vram_status_text
seg = ensure_stereo(seg, PROCESS_SR, sample_width)
seg = seg - 15
seg = apply_noise_gate(seg, threshold_db=-80, sample_rate=PROCESS_SR)
seg = balance_stereo(seg, noise_threshold=-40, sample_rate=PROCESS_SR)
seg = rms_normalize(seg, target_rms_db=target_volume, peak_limit_db=-3.0, sample_rate=PROCESS_SR)
seg = apply_eq(seg, sample_rate=PROCESS_SR)
seg = seg[:dur * 1000]
segments.append(seg)
del audio
clean_memory()
vram_status_text = f"VRAM after chunk {chunk_idx}: {torch.cuda.memory_allocated() / 1024**2:.2f} MB"
except Exception as e:
logger.error(f"Post-process failed chunk {chunk_idx}: {e}")
logger.error(traceback.format_exc())
return None, f"❌ Post-process failed chunk {chunk_idx}.", vram_status_text
if not segments:
return None, "❌ No audio generated.", vram_status_text
logger.info("Combining chunks...")
final_seg = segments[0]
overlap_ms = int(OVERLAP_SEC * 1000)
for i in range(1, len(segments)):
final_seg = _crossfade(final_seg, segments[i], overlap_ms, PROCESS_SR, bd)
final_seg = final_seg[:total_duration * 1000]
final_seg = apply_noise_gate(final_seg, threshold_db=-80, sample_rate=PROCESS_SR)
final_seg = balance_stereo(final_seg, noise_threshold=-40, sample_rate=PROCESS_SR)
final_seg = rms_normalize(final_seg, target_rms_db=target_volume, peak_limit_db=-3.0, sample_rate=PROCESS_SR)
final_seg = apply_eq(final_seg, sample_rate=PROCESS_SR)
final_seg = apply_fade(final_seg, 500, 800)
final_seg = final_seg - 10
final_seg = final_seg.set_frame_rate(out_sr)
style_slug = _slugify_style(style_key)
fname = f"{style_slug}_{int(time.time())}.mp3"
mp3_path = str(MP3_DIR / fname)
try:
clean_memory()
final_seg.export(
mp3_path,
format="mp3",
bitrate=bitrate,
tags={"title": f"GhostAI Instrumental β€” {style_slug}", "artist": "GhostAI"}
)
except Exception as e:
logger.error(f"MP3 export failed: {e}")
fb = str(MP3_DIR / f"{style_slug}_fb_{int(time.time())}.mp3")
try:
final_seg.export(fb, format="mp3", bitrate="128k")
mp3_path = fb
except Exception as ee:
return None, f"❌ Export failed: {ee}", vram_status_text
elapsed = time.time() - start_time
vram_status_text = f"Final VRAM: {torch.cuda.memory_allocated() / 1024**2:.2f} MB"
logger.info(f"Done in {elapsed:.2f}s -> {mp3_path}")
return mp3_path, "βœ… Generated.", vram_status_text
def generate_music_wrapper(*args):
try:
return generate_music(*args)
finally:
clean_memory()
def clear_inputs():
s = DEFAULT_SETTINGS.copy()
return (
s["instrumental_prompt"], s["cfg_scale"], s["top_k"], s["top_p"], s["temperature"],
s["total_duration"], s["bpm"], s["drum_beat"], s["synthesizer"], s["rhythmic_steps"],
s["bass_style"], s["guitar_style"], s["target_volume"], s["preset"], s["max_steps"],
s["bitrate"], s["output_sample_rate"], s["bit_depth"], s["style"]
)
# ======================================================================================
# SERVER STATUS & API
# ======================================================================================
BUSY_LOCK = threading.Lock()
BUSY_FLAG = False
BUSY_FILE = "/tmp/musicgen_busy.lock"
CURRENT_JOB: Dict[str, Any] = {"id": None, "start": None}
def set_busy(val: bool, job_id: Optional[str] = None):
global BUSY_FLAG, CURRENT_JOB
with BUSY_LOCK:
BUSY_FLAG = val
if val:
CURRENT_JOB["id"] = job_id or f"job_{int(time.time())}"
CURRENT_JOB["start"] = time.time()
try:
Path(BUSY_FILE).write_text(CURRENT_JOB["id"])
except Exception:
pass
else:
CURRENT_JOB["id"] = None
CURRENT_JOB["start"] = None
try:
if os.path.exists(BUSY_FILE):
os.remove(BUSY_FILE)
except Exception:
pass
def is_busy() -> bool:
with BUSY_LOCK:
return BUSY_FLAG
def job_elapsed() -> float:
with BUSY_LOCK:
if CURRENT_JOB["start"] is None:
return 0.0
return time.time() - CURRENT_JOB["start"]
class RenderRequest(BaseModel):
instrumental_prompt: str
cfg_scale: Optional[float] = None
top_k: Optional[int] = None
top_p: Optional[float] = None
temperature: Optional[float] = None
total_duration: Optional[int] = None
bpm: Optional[int] = None
drum_beat: Optional[str] = None
synthesizer: Optional[str] = None
rhythmic_steps: Optional[str] = None
bass_style: Optional[str] = None
guitar_style: Optional[str] = None
target_volume: Optional[float] = None
preset: Optional[str] = None
max_steps: Optional[int] = None
bitrate: Optional[str] = None
output_sample_rate: Optional[str] = None
bit_depth: Optional[str] = None
style: Optional[str] = None # NEW: pass style key for filename tagging
fastapp = FastAPI(title=f"GhostAI Music Server {RELEASE}", version=RELEASE)
fastapp.add_middleware(
CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"]
)
@fastapp.get("/health")
def health():
return {"ok": True, "ts": int(time.time()), "release": RELEASE}
@fastapp.get("/status")
def status():
return {"busy": is_busy(), "job_id": CURRENT_JOB["id"], "since": CURRENT_JOB["start"], "elapsed": job_elapsed()}
@fastapp.get("/styles")
def styles():
return {"styles": STYLES.list_styles()}
@fastapp.get("/prompt/{style}")
def prompt(style: str, bpm: int = 120, chunk: int = 1,
drum_beat: str = "none", synthesizer: str = "none", rhythmic_steps: str = "none",
bass_style: str = "none", guitar_style: str = "none"):
txt = STYLES.build_prompt(style, bpm, chunk, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style)
if not txt:
raise HTTPException(status_code=404, detail="Style not found")
return {"style": style, "prompt": txt}
for sec, cfg in list(STYLES.styles.items()):
api_name = cfg.get("api_name")
if api_name:
route_path = api_name
def make_route(sname, route_path_):
@fastapp.get(route_path_)
def _(bpm: int = 120, chunk: int = 1,
drum_beat: str = "none", synthesizer: str = "none", rhythmic_steps: str = "none",
bass_style: str = "none", guitar_style: str = "none"):
txt = STYLES.build_prompt(sname, bpm, chunk, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style)
if not txt:
raise HTTPException(status_code=404, detail="Style not found")
return {"style": sname, "prompt": txt}
make_route(sec, route_path)
@fastapp.get("/config")
def get_config():
return {"defaults": CURRENT_SETTINGS, "release": RELEASE}
@fastapp.post("/settings")
def set_settings(payload: Dict[str, Any]):
try:
s = CURRENT_SETTINGS.copy()
s.update(payload or {})
save_settings(s)
for k, v in s.items():
CURRENT_SETTINGS[k] = v
return {"ok": True, "saved": s}
except Exception as e:
raise HTTPException(status_code=400, detail=str(e))
# -----------------------------
# ASCII-safe header sanitizer
# -----------------------------
def _ascii_header(s: str) -> str:
return re.sub(r'[^\x20-\x7E]', '', str(s or ''))
# -----------------------------
# BINARY MP3 RENDER ENDPOINT
# -----------------------------
@fastapp.post("/render")
def render(req: RenderRequest):
if is_busy():
raise HTTPException(status_code=409, detail="Server busy")
job_id = f"render_{int(time.time())}"
set_busy(True, job_id)
try:
s = CURRENT_SETTINGS.copy()
for k, v in req.dict().items():
if v is not None:
s[k] = v
mp3_path, msg, vram = generate_music(
s.get("instrumental_prompt", req.instrumental_prompt),
float(s.get("cfg_scale", DEFAULT_SETTINGS["cfg_scale"])),
int(s.get("top_k", DEFAULT_SETTINGS["top_k"])),
float(s.get("top_p", DEFAULT_SETTINGS["top_p"])),
float(s.get("temperature", DEFAULT_SETTINGS["temperature"])),
int(s.get("total_duration", DEFAULT_SETTINGS["total_duration"])),
int(s.get("bpm", DEFAULT_SETTINGS["bpm"])),
str(s.get("drum_beat", DEFAULT_SETTINGS["drum_beat"])),
str(s.get("synthesizer", DEFAULT_SETTINGS["synthesizer"])),
str(s.get("rhythmic_steps", DEFAULT_SETTINGS["rhythmic_steps"])),
str(s.get("bass_style", DEFAULT_SETTINGS["bass_style"])),
str(s.get("guitar_style", DEFAULT_SETTINGS["guitar_style"])),
float(s.get("target_volume", DEFAULT_SETTINGS["target_volume"])),
str(s.get("preset", DEFAULT_SETTINGS["preset"])),
str(s.get("max_steps", DEFAULT_SETTINGS["max_steps"])),
"",
str(s.get("bitrate", DEFAULT_SETTINGS["bitrate"])),
str(s.get("output_sample_rate", DEFAULT_SETTINGS["output_sample_rate"])),
str(s.get("bit_depth", DEFAULT_SETTINGS["bit_depth"])),
str(s.get("style", "custom"))
)
if not mp3_path or not os.path.exists(mp3_path):
raise HTTPException(status_code=500, detail=_ascii_header(msg or "No file produced"))
filename = os.path.basename(mp3_path)
headers = {
"X-Job-ID": _ascii_header(job_id),
"X-Status": _ascii_header(msg),
"X-VRAM": _ascii_header(vram),
"X-Release": _ascii_header(RELEASE),
}
return FileResponse(
path=mp3_path,
media_type="audio/mpeg",
filename=_ascii_header(filename),
headers=headers,
)
finally:
set_busy(False, None)
def _start_fastapi():
uvicorn.run(fastapp, host="0.0.0.0", port=8555, log_level="info")
api_thread = threading.Thread(target=_start_fastapi, daemon=True)
api_thread.start()
logger.info(f"FastAPI server started on http://0.0.0.0:8555 [{RELEASE}]")
# ======================================================================================
# GRADIO UI
# ======================================================================================
def read_css() -> str:
try:
if CSS_FILE.exists():
return CSS_FILE.read_text(encoding="utf-8")
return """
:root { color-scheme: dark; }
body, .gradio-container { background: #0E1014 !important; color: #FFFFFF !important; }
* { color: #FFFFFF !important; }
input, textarea, select {
background: #151922 !important; color: #FFFFFF !important;
border: 1px solid #2A3142 !important; border-radius: 10px !important;
}
.ga-header { display:flex; gap:12px; align-items:center; }
.ga-header .logo { font-size: 28px; }
"""
except Exception as e:
logger.error(f"Failed to read CSS: {e}")
return ""
def read_examples() -> str:
try:
return EXAMPLES_MD.read_text(encoding="utf-8")
except Exception:
return "# GhostAI Examples\n\n_Provide examples.md next to app.py_"
loaded = CURRENT_SETTINGS
with gr.Blocks(css=read_css(), analytics_enabled=False, title=f"GhostAI Music Generator {RELEASE}") as demo:
with gr.Tabs():
with gr.Tab(f"πŸŽ›οΈ Generator β€” {RELEASE}"):
gr.Markdown(f"""
<div class="ga-header" role="banner" aria-label="GhostAI Music Generator">
<div class="logo">πŸ‘»</div>
<h1>GhostAI Music Generator</h1>
<p>Unified 30s chunking Β· 60–120s ready Β· API & status</p>
</div>
""")
with gr.Group(elem_classes="ga-section"):
gr.Markdown("### Prompt")
instrumental_prompt = gr.Textbox(
label="Instrumental Prompt",
placeholder="Type a prompt or click a style button below",
lines=4,
value=loaded.get("instrumental_prompt", "")
)
with gr.Group(elem_classes="ga-section"):
gr.Markdown("### Band / Style (grid 4 per row)")
def row_of_buttons(entries):
with gr.Row(equal_height=True):
buttons = []
for key, label in entries:
btn = gr.Button(label, variant="secondary", scale=1, min_width=0)
buttons.append((key, btn))
return buttons
row1 = row_of_buttons([
("metallica", "Metallica (Thrash) 🎸"),
("nirvana", "Nirvana (Grunge) 🎀"),
("pearl_jam", "Pearl Jam (Grunge) πŸ¦ͺ"),
("soundgarden", "Soundgarden (Grunge/Alt Metal) πŸŒ‘"),
])
row2 = row_of_buttons([
("foo_fighters", "Foo Fighters (Alt Rock) 🀘"),
("red_hot_chili_peppers", "Red Hot Chili Peppers (Funk Rock) 🌢️"),
("smashing_pumpkins", "Smashing Pumpkins (Alt) πŸŽƒ"),
("radiohead", "Radiohead (Experimental) 🧠"),
])
row3 = row_of_buttons([
("alternative_rock", "Alternative Rock (Pixies) 🎡"),
("post_punk", "Post-Punk (Joy Division) πŸ–€"),
("indie_rock", "Indie Rock (Arctic Monkeys) 🎀"),
("funk_rock", "Funk Rock (RATM) πŸ•Ί"),
])
row4 = row_of_buttons([
("detroit_techno", "Detroit Techno πŸŽ›οΈ"),
("deep_house", "Deep House 🏠"),
("classical_star_wars", "Classical (Star Wars Suite) ✨"),
("foo_pad", "β€”")
])
with gr.Group(elem_classes="ga-section"):
gr.Markdown("### Settings")
with gr.Group():
with gr.Row():
cfg_scale = gr.Slider(1.0, 10.0, step=0.1, value=float(loaded.get("cfg_scale", DEFAULT_SETTINGS["cfg_scale"])), label="CFG Scale")
top_k = gr.Slider(10, 500, step=10, value=int(loaded.get("top_k", DEFAULT_SETTINGS["top_k"])), label="Top-K")
top_p = gr.Slider(0.0, 1.0, step=0.01, value=float(loaded.get("top_p", DEFAULT_SETTINGS["top_p"])), label="Top-P")
temperature = gr.Slider(0.1, 2.0, step=0.01, value=float(loaded.get("temperature", DEFAULT_SETTINGS["temperature"])), label="Temperature")
with gr.Row():
total_duration = gr.Dropdown(choices=[30, 60, 90, 120], value=int(loaded.get("total_duration", 60)), label="Song Length (seconds)")
bpm = gr.Slider(60, 180, step=1, value=int(loaded.get("bpm", 120)), label="Tempo (BPM)")
target_volume = gr.Slider(-30.0, -20.0, step=0.5, value=float(loaded.get("target_volume", -23.0)), label="Target Loudness (dBFS RMS)")
preset = gr.Dropdown(choices=["default", "rock", "techno", "grunge", "indie", "funk_rock"], value=str(loaded.get("preset", "default")), label="Preset")
with gr.Row():
drum_beat = gr.Dropdown(choices=["none", "standard rock", "funk groove", "techno kick", "jazz swing", "four-on-the-floor", "steady kick", "orchestral percussion", "precise drums", "heavy drums"], value=str(loaded.get("drum_beat", "none")), label="Drum Beat")
synthesizer = gr.Dropdown(choices=["none", "analog synth", "digital pad", "arpeggiated synth", "lush synths", "atmospheric synths", "pulsing synths", "analog pad", "warm synths"], value=str(loaded.get("synthesizer", "none")), label="Synthesizer")
rhythmic_steps = gr.Dropdown(choices=["none", "syncopated steps", "steady steps", "complex steps", "martial march", "staccato ostinato", "triplet swells"], value=str(loaded.get("rhythmic_steps", "none")), label="Rhythmic Steps")
with gr.Row():
bass_style = gr.Dropdown(choices=["none", "slap bass", "deep bass", "melodic bass", "groovy bass", "hypnotic bass", "driving bass", "low brass", "cellos", "double basses", "subby bass"], value=str(loaded.get("bass_style", "none")), label="Bass Style")
guitar_style = gr.Dropdown(choices=["none", "distorted", "clean", "jangle", "downpicked", "thrash riffing", "dreamy", "experimental", "funky"], value=str(loaded.get("guitar_style", "none")), label="Guitar Style")
max_steps = gr.Dropdown(choices=[1000, 1200, 1300, 1500], value=int(loaded.get("max_steps", 1500)), label="Max Steps (hint)")
bitrate_state = gr.State(value=str(loaded.get("bitrate", "192k")))
sample_rate_state = gr.State(value=str(loaded.get("output_sample_rate", "48000")))
bit_depth_state = gr.State(value=str(loaded.get("bit_depth", "16")))
selected_style = gr.State(value=str(loaded.get("style", "custom"))) # NEW: style for filename
with gr.Row():
bitrate_128_btn = gr.Button("Bitrate 128k", variant="secondary")
bitrate_192_btn = gr.Button("Bitrate 192k", variant="secondary")
bitrate_320_btn = gr.Button("Bitrate 320k", variant="secondary")
sample_rate_22050_btn = gr.Button("SR 22.05k", variant="secondary")
sample_rate_44100_btn = gr.Button("SR 44.1k", variant="secondary")
sample_rate_48000_btn = gr.Button("SR 48k", variant="secondary")
bit_depth_16_btn = gr.Button("16-bit", variant="secondary")
bit_depth_24_btn = gr.Button("24-bit", variant="secondary")
with gr.Row():
gen_btn = gr.Button("Generate 🎢", variant="primary")
clr_btn = gr.Button("Clear 🧹", variant="secondary")
save_btn = gr.Button("Save Settings πŸ’Ύ", variant="secondary")
load_btn = gr.Button("Load Settings πŸ“‚", variant="secondary")
reset_btn = gr.Button("Reset Defaults ♻️", variant="secondary")
with gr.Group(elem_classes="ga-section"):
gr.Markdown("### Output")
out_audio = gr.Audio(label="Generated Track", type="filepath")
status_box = gr.Textbox(label="Status", interactive=False)
vram_box = gr.Textbox(label="VRAM", interactive=False, value="")
with gr.Group(elem_classes="ga-section"):
gr.Markdown("### Logs")
log_output = gr.Textbox(label="Current Log (rotating ≀ 5MB)", lines=14, interactive=False)
log_btn = gr.Button("View Log πŸ“‹", variant="secondary")
with gr.Tab("πŸ“š Info & Examples"):
md_box = gr.Markdown(read_examples())
refresh_md = gr.Button("Refresh Examples.md", variant="secondary")
refresh_md.click(lambda: read_examples(), outputs=md_box)
# =========================
# STYLE -> UI SYNC HANDLER
# =========================
def set_prompt_and_settings_from_style(style_key, current_bpm, current_drum, current_synth, current_steps, current_bass, current_guitar):
defaults = STYLES.style_defaults_for_ui(style_key)
new_bpm = int(defaults.get("bpm", current_bpm or 120))
new_drum = str(defaults.get("drum_beat", "none"))
new_synth = str(defaults.get("synthesizer", "none"))
new_steps = str(defaults.get("rhythmic_steps", "none"))
new_bass = str(defaults.get("bass_style", "none"))
new_guitar = str(defaults.get("guitar_style", "none"))
prompt_txt = STYLES.build_prompt(
style_key,
new_bpm,
1,
new_drum,
new_synth,
new_steps,
new_bass,
new_guitar
)
if not prompt_txt:
prompt_txt = f"{style_key}: update prompts.ini"
return (
prompt_txt,
new_bpm,
new_drum,
new_synth,
new_steps,
new_bass,
new_guitar,
style_key # update selected_style state for filename tagging
)
for key, btn in row1 + row2 + row3 + row4:
if key == "foo_pad":
continue
btn.click(
set_prompt_and_settings_from_style,
inputs=[gr.State(key), bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style],
outputs=[instrumental_prompt, bpm, drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, selected_style]
)
# Quick-sets
bitrate_128_btn.click(lambda: "128k", outputs=bitrate_state)
bitrate_192_btn.click(lambda: "192k", outputs=bitrate_state)
bitrate_320_btn.click(lambda: "320k", outputs=bitrate_state)
sample_rate_22050_btn.click(lambda: "22050", outputs=sample_rate_state)
sample_rate_44100_btn.click(lambda: "44100", outputs=sample_rate_state)
sample_rate_48000_btn.click(lambda: "48000", outputs=sample_rate_state)
bit_depth_16_btn.click(lambda: "16", outputs=bit_depth_state)
bit_depth_24_btn.click(lambda: "24", outputs=bit_depth_state)
# Generate (pass style for filename)
gen_btn.click(
generate_music_wrapper,
inputs=[
instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, bpm,
drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, target_volume,
preset, max_steps, vram_box, bitrate_state, sample_rate_state, bit_depth_state, selected_style
],
outputs=[out_audio, status_box, vram_box]
)
# Clear
clr_btn.click(
clear_inputs, outputs=[
instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, bpm,
drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, target_volume,
preset, max_steps, bitrate_state, sample_rate_state, bit_depth_state, selected_style
]
)
# Save/Load/Reset include style
def _save_action(
instrumental_prompt_v, cfg_v, top_k_v, top_p_v, temp_v, dur_v, bpm_v,
drum_v, synth_v, steps_v, bass_v, guitar_v, vol_v, preset_v, maxsteps_v, br_v, sr_v, bd_v, style_v
):
s = {
"instrumental_prompt": instrumental_prompt_v,
"cfg_scale": float(cfg_v),
"top_k": int(top_k_v),
"top_p": float(top_p_v),
"temperature": float(temp_v),
"total_duration": int(dur_v),
"bpm": int(bpm_v),
"drum_beat": str(drum_v),
"synthesizer": str(synth_v),
"rhythmic_steps": str(steps_v),
"bass_style": str(bass_v),
"guitar_style": str(guitar_v),
"target_volume": float(vol_v),
"preset": str(preset_v),
"max_steps": int(maxsteps_v),
"bitrate": str(br_v),
"output_sample_rate": str(sr_v),
"bit_depth": str(bd_v),
"style": str(style_v or "custom")
}
save_settings(s)
for k, v in s.items():
CURRENT_SETTINGS[k] = v
return "βœ… Settings saved."
def _load_action():
s = load_settings()
for k, v in s.items():
CURRENT_SETTINGS[k] = v
return (
s["instrumental_prompt"], s["cfg_scale"], s["top_k"], s["top_p"], s["temperature"],
s["total_duration"], s["bpm"], s["drum_beat"], s["synthesizer"], s["rhythmic_steps"],
s["bass_style"], s["guitar_style"], s["target_volume"], s["preset"], s["max_steps"],
s["bitrate"], s["output_sample_rate"], s["bit_depth"], s.get("style", "custom"),
"βœ… Settings loaded."
)
def _reset_action():
s = DEFAULT_SETTINGS.copy()
save_settings(s)
for k, v in s.items():
CURRENT_SETTINGS[k] = v
return (
s["instrumental_prompt"], s["cfg_scale"], s["top_k"], s["top_p"], s["temperature"],
s["total_duration"], s["bpm"], s["drum_beat"], s["synthesizer"], s["rhythmic_steps"],
s["bass_style"], s["guitar_style"], s["target_volume"], s["preset"], s["max_steps"],
s["bitrate"], s["output_sample_rate"], s["bit_depth"], s["style"],
"βœ… Defaults restored."
)
save_btn.click(
_save_action,
inputs=[
instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, bpm,
drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, target_volume,
preset, max_steps, bitrate_state, sample_rate_state, bit_depth_state, selected_style
],
outputs=status_box
)
load_btn.click(
_load_action,
outputs=[
instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, bpm,
drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, target_volume,
preset, max_steps, bitrate_state, sample_rate_state, bit_depth_state, selected_style, status_box
]
)
reset_btn.click(
_reset_action,
outputs=[
instrumental_prompt, cfg_scale, top_k, top_p, temperature, total_duration, bpm,
drum_beat, synthesizer, rhythmic_steps, bass_style, guitar_style, target_volume,
preset, max_steps, bitrate_state, sample_rate_state, bit_depth_state, selected_style, status_box
]
)
def _get_log():
try:
return LOG_FILE.read_text(encoding="utf-8")[-40000:]
except Exception as e:
return f"Log read error: {e}"
log_btn.click(_get_log, outputs=log_output)
if __name__ == "__main__":
print(f"{Fore.CYAN}Launching Gradio UI http://0.0.0.0:9999 [{RELEASE}]{Fore.RESET}")
try:
demo.launch(
server_name="0.0.0.0",
server_port=9999,
share=False,
inbrowser=False,
show_error=True
)
except Exception as e:
logger.error(f"Gradio launch failed: {e}")
logger.error(traceback.format_exc())
sys.exit(1)