--- base_model: unsloth/Llama-3.2-1B-Instruct-bnb-4bit library_name: transformers pipeline_tag: text-generation tags: - gguf - fine-tuned - lima language: - en license: apache-2.0 --- # Llama-3.2-1B-Instruct-bnb-4bit-lima - GGUF Format GGUF format quantizations for llama.cpp/Ollama. ## Model Details - **Base Model**: [unsloth/Llama-3.2-1B-Instruct-bnb-4bit](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct-bnb-4bit) - **Format**: gguf - **Dataset**: [GAIR/lima](https://huggingface.co/datasets/GAIR/lima) - **Size**: 0.75 GB - 2.31 GB - **Usage**: llama.cpp / Ollama ## Related Models - **LoRA Adapters**: [fs90/Llama-3.2-1B-Instruct-bnb-4bit-lima-lora](https://huggingface.co/fs90/Llama-3.2-1B-Instruct-bnb-4bit-lima-lora) - Smaller LoRA-only adapters - **Merged FP16 Model**: [fs90/Llama-3.2-1B-Instruct-bnb-4bit-lima](https://huggingface.co/fs90/Llama-3.2-1B-Instruct-bnb-4bit-lima) - Original unquantized model in FP16 ## Prompt Format This model uses the **Llama 3.2** chat template. ### Ollama Template Format ``` {{ if .Messages }} {{- if or .System .Tools }}<|start_header_id|>system<|end_header_id|> {{- if .System }} {{ .System }} {{- end }} {{- if .Tools }} You are a helpful assistant with tool calling capabilities. When you receive a tool call response, use the output to format an answer to the original use question. {{- end }} {{- end }}<|eot_id|> {{- range $i, $_ := .Messages }} {{- $last := eq (len (slice $.Messages $i)) 1 }} {{- if eq .Role "user" }}<|start_header_id|>user<|end_header_id|> {{- if and $.Tools $last }} Given the following functions, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}. Do not use variables. {{ $.Tools }} {{- end }} {{ .Content }}<|eot_id|>{{ if $last }}<|start_header_id|>assistant<|end_header_id|> {{ end }} {{- else if eq .Role "assistant" }}<|start_header_id|>assistant<|end_header_id|> {{- if .ToolCalls }} {{- range .ToolCalls }}{"name": "{{ .Function.Name }}", "parameters": {{ .Function.Arguments }}}{{ end }} {{- else }} {{ .Content }}{{ if not $last }}<|eot_id|>{{ end }} {{- end }} {{- else if eq .Role "tool" }}<|start_header_id|>ipython<|end_header_id|> {{ .Content }}<|eot_id|>{{ if $last }}<|start_header_id|>assistant<|end_header_id|> {{ end }} {{- end }} {{- end }} {{- else }} {{- if .System }}<|start_header_id|>system<|end_header_id|> {{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|> {{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|> {{ end }}{{ .Response }}{{ if .Response }}<|eot_id|>{{ end }} ``` ## Training Details - **LoRA Rank**: 64 - **Training Steps**: 480 - **Training Loss**: 1.1123 - **Max Seq Length**: 2048 - **Training Scope**: 1,278 samples (3.0 epoch(s), full dataset) For complete training configuration, see the LoRA adapters repository/directory. ## Available Quantizations | Quantization | File | Size | Quality | |--------------|------|------|---------| | **F16** | [Llama-3.2-1B-Instruct-bnb-4bit-lima-F16.gguf](Llama-3.2-1B-Instruct-bnb-4bit-lima-F16.gguf) | 2.31 GB | Full precision (largest) | | **Q4_K_M** | [Llama-3.2-1B-Instruct-bnb-4bit-lima-Q4_K_M.gguf](Llama-3.2-1B-Instruct-bnb-4bit-lima-Q4_K_M.gguf) | 0.75 GB | Good balance (recommended) | | **Q6_K** | [Llama-3.2-1B-Instruct-bnb-4bit-lima-Q6_K.gguf](Llama-3.2-1B-Instruct-bnb-4bit-lima-Q6_K.gguf) | 0.95 GB | High quality | | **Q8_0** | [Llama-3.2-1B-Instruct-bnb-4bit-lima-Q8_0.gguf](Llama-3.2-1B-Instruct-bnb-4bit-lima-Q8_0.gguf) | 1.23 GB | Very high quality, near original | **Usage:** Use the dropdown menu above to select a quantization, then follow HuggingFace's provided instructions. ## License Based on unsloth/Llama-3.2-1B-Instruct-bnb-4bit and trained on GAIR/lima. Please refer to the original model and dataset licenses. ## Credits **Trained by:** Farhan Syah **Training pipeline:** - [unsloth-finetuning](https://github.com/farhan-syah/unsloth-finetuning) by [@farhan-syah](https://github.com/farhan-syah) - [Unsloth](https://github.com/unslothai/unsloth) - 2x faster LLM fine-tuning **Base components:** - Base model: [unsloth/Llama-3.2-1B-Instruct-bnb-4bit](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct-bnb-4bit) - Training dataset: [GAIR/lima](https://huggingface.co/datasets/GAIR/lima) by GAIR