Eugene Siow
commited on
Commit
·
bffd03a
1
Parent(s):
cca5219
Initial commit.
Browse files- README.md +142 -0
- config.json +10 -0
- images/pan_2_4_compare.png +0 -0
- images/pan_4_4_compare.png +0 -0
- pytorch_model_2x.pt +3 -0
- pytorch_model_4x.pt +3 -0
README.md
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- super-image
|
| 5 |
+
- image-super-resolution
|
| 6 |
+
datasets:
|
| 7 |
+
- eugenesiow/Div2k
|
| 8 |
+
- eugenesiow/Set5
|
| 9 |
+
- eugenesiow/Set14
|
| 10 |
+
- eugenesiow/BSD100
|
| 11 |
+
- eugenesiow/Urban100
|
| 12 |
+
metrics:
|
| 13 |
+
- pnsr
|
| 14 |
+
- ssim
|
| 15 |
+
---
|
| 16 |
+
# Pixel Attention Network (PAN)
|
| 17 |
+
PAN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Efficient Image Super-Resolution Using Pixel Attention](https://arxiv.org/abs/2010.01073) by Zhao et al. (2020) and first released in [this repository](https://github.com/zhaohengyuan1/PAN).
|
| 18 |
+
|
| 19 |
+
The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling.
|
| 20 |
+
|
| 21 |
+

|
| 22 |
+
## Model description
|
| 23 |
+
The PAN model proposes a a lightweight convolutional neural network for image super resolution. Pixel attention (PA) is similar to channel attention and spatial attention in formulation. PA however produces 3D attention maps instead of a 1D attention vector or a 2D map. This attention scheme introduces fewer additional parameters but generates better SR results.
|
| 24 |
+
|
| 25 |
+
The model is very lightweight with the model being just 260k to 270k parameters (~1mb).
|
| 26 |
+
## Intended uses & limitations
|
| 27 |
+
You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset.
|
| 28 |
+
### How to use
|
| 29 |
+
The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library:
|
| 30 |
+
```bash
|
| 31 |
+
pip install super-image
|
| 32 |
+
```
|
| 33 |
+
Here is how to use a pre-trained model to upscale your image:
|
| 34 |
+
```python
|
| 35 |
+
from super_image import PanModel, ImageLoader
|
| 36 |
+
from PIL import Image
|
| 37 |
+
import requests
|
| 38 |
+
|
| 39 |
+
url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg'
|
| 40 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 41 |
+
|
| 42 |
+
model = PanModel.from_pretrained('eugenesiow/pan', scale=2) # scale 2, 3 and 4 models available
|
| 43 |
+
inputs = ImageLoader.load_image(image)
|
| 44 |
+
preds = model(inputs)
|
| 45 |
+
|
| 46 |
+
ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png`
|
| 47 |
+
ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling
|
| 48 |
+
```
|
| 49 |
+
[](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab")
|
| 50 |
+
## Training data
|
| 51 |
+
The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).
|
| 52 |
+
## Training procedure
|
| 53 |
+
### Preprocessing
|
| 54 |
+
We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566).
|
| 55 |
+
Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.
|
| 56 |
+
During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.
|
| 57 |
+
Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.
|
| 58 |
+
|
| 59 |
+
We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data:
|
| 60 |
+
```bash
|
| 61 |
+
pip install datasets
|
| 62 |
+
```
|
| 63 |
+
The following code gets the data and preprocesses/augments the data.
|
| 64 |
+
|
| 65 |
+
```python
|
| 66 |
+
from datasets import load_dataset
|
| 67 |
+
from super_image.data import EvalDataset, TrainDataset, augment_five_crop
|
| 68 |
+
|
| 69 |
+
augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\
|
| 70 |
+
.map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method
|
| 71 |
+
train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader
|
| 72 |
+
eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader
|
| 73 |
+
```
|
| 74 |
+
### Pretraining
|
| 75 |
+
The model was trained on GPU. The training code is provided below:
|
| 76 |
+
```python
|
| 77 |
+
from super_image import Trainer, TrainingArguments, PanModel, PanConfig
|
| 78 |
+
|
| 79 |
+
training_args = TrainingArguments(
|
| 80 |
+
output_dir='./results', # output directory
|
| 81 |
+
num_train_epochs=1000, # total number of training epochs
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
config = PanConfig(
|
| 85 |
+
scale=4, # train a model to upscale 4x
|
| 86 |
+
)
|
| 87 |
+
model = PanModel(config)
|
| 88 |
+
|
| 89 |
+
trainer = Trainer(
|
| 90 |
+
model=model, # the instantiated model to be trained
|
| 91 |
+
args=training_args, # training arguments, defined above
|
| 92 |
+
train_dataset=train_dataset, # training dataset
|
| 93 |
+
eval_dataset=eval_dataset # evaluation dataset
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
trainer.train()
|
| 97 |
+
```
|
| 98 |
+
|
| 99 |
+
[](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab")
|
| 100 |
+
## Evaluation results
|
| 101 |
+
The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm).
|
| 102 |
+
|
| 103 |
+
Evaluation datasets include:
|
| 104 |
+
- Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5)
|
| 105 |
+
- Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14)
|
| 106 |
+
- BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100)
|
| 107 |
+
- Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100)
|
| 108 |
+
|
| 109 |
+
The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline.
|
| 110 |
+
|
| 111 |
+
|Dataset |Scale |Bicubic |pan |
|
| 112 |
+
|--- |--- |--- |--- |
|
| 113 |
+
|Set5 |2x |33.64/0.9292 |**37.77/0.9599** |
|
| 114 |
+
|Set5 |3x |30.39/0.8678 |**** |
|
| 115 |
+
|Set5 |4x |28.42/0.8101 |**31.92/0.8915** |
|
| 116 |
+
|Set14 |2x |30.22/0.8683 |**33.42/0.9162** |
|
| 117 |
+
|Set14 |3x |27.53/0.7737 |**** |
|
| 118 |
+
|Set14 |4x |25.99/0.7023 |**28.57/0.7802** |
|
| 119 |
+
|BSD100 |2x |29.55/0.8425 |**33.6/0.9235** |
|
| 120 |
+
|BSD100 |3x |27.20/0.7382 |**** |
|
| 121 |
+
|BSD100 |4x |25.96/0.6672 |**28.35/0.7595** |
|
| 122 |
+
|Urban100 |2x |26.66/0.8408 |**31.31/0.9197** |
|
| 123 |
+
|Urban100 |3x | |**** |
|
| 124 |
+
|Urban100 |4x |23.14/0.6573 |**25.63/0.7692** |
|
| 125 |
+
|
| 126 |
+

|
| 127 |
+
|
| 128 |
+
You can find a notebook to easily run evaluation on pretrained models below:
|
| 129 |
+
|
| 130 |
+
[](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab")
|
| 131 |
+
|
| 132 |
+
## BibTeX entry and citation info
|
| 133 |
+
```bibtex
|
| 134 |
+
@misc{zhao2020efficient,
|
| 135 |
+
title={Efficient Image Super-Resolution Using Pixel Attention},
|
| 136 |
+
author={Hengyuan Zhao and Xiangtao Kong and Jingwen He and Yu Qiao and Chao Dong},
|
| 137 |
+
year={2020},
|
| 138 |
+
eprint={2010.01073},
|
| 139 |
+
archivePrefix={arXiv},
|
| 140 |
+
primaryClass={eess.IV}
|
| 141 |
+
}
|
| 142 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bam": false,
|
| 3 |
+
"data_parallel": false,
|
| 4 |
+
"in_nc": 3,
|
| 5 |
+
"model_type": "PAN",
|
| 6 |
+
"nb": 16,
|
| 7 |
+
"nf": 40,
|
| 8 |
+
"out_nc": 3,
|
| 9 |
+
"unf": 24
|
| 10 |
+
}
|
images/pan_2_4_compare.png
ADDED
|
images/pan_4_4_compare.png
ADDED
|
pytorch_model_2x.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8fc18d9e39da7734661b8db9f1b024f874d5ba74ef39b5963f9f534443245beb
|
| 3 |
+
size 1098409
|
pytorch_model_4x.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5ab3ae83d4aed20c624cc06908c7a6a587a602ed8b387d44cabfa1f8a1354cc9
|
| 3 |
+
size 1144413
|