--- dataset_info: - config_name: corpus features: - name: _id dtype: string - name: text dtype: string splits: - name: train num_bytes: 6809516 num_examples: 2919 download_size: 2948742 dataset_size: 6809516 - config_name: qrels features: - name: query-id dtype: string - name: corpus-id dtype: string splits: - name: train num_bytes: 1054 num_examples: 56 download_size: 2081 dataset_size: 1054 - config_name: queries features: - name: _id dtype: string - name: text dtype: string splits: - name: train num_bytes: 8645 num_examples: 50 download_size: 6492 dataset_size: 8645 configs: - config_name: corpus data_files: - split: train path: corpus/train-* - config_name: qrels data_files: - split: train path: qrels/train-* - config_name: queries data_files: - split: train path: queries/train-* language: - ar tags: - information-retrieval - nanobeir - benchmark --- # NanoSciFact - Arabic This dataset is the Arabic version of the NanoSciFact benchmark from the NanoBEIR multilingual collection. ## Dataset Origin This dataset is derived from [lightonai/nanobeir-multilingual](https://huggingface.co/datasets/lightonai/nanobeir-multilingual). NanoBEIR is a smaller version of the BEIR benchmark designed for efficient evaluation of information retrieval models. ## Dataset Structure The dataset contains three configurations: - **corpus**: The document collection to search through - **queries**: The search queries - **qrels**: Relevance judgments (query-document pairs with relevance scores) ## Usage ```python from datasets import load_dataset # Load the different configurations corpus = load_dataset("wissamantoun/NanoSciFact_Arabic", "corpus") queries = load_dataset("wissamantoun/NanoSciFact_Arabic", "queries") qrels = load_dataset("wissamantoun/NanoSciFact_Arabic", "qrels") ``` ## Citation If you use this dataset, please cite the original BEIR and NanoBEIR work.