Upload dataset nigerian_transport_and_logistics_traffic_signal_timing
Browse files
README.md
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
---
|
| 3 |
+
license: gpl
|
| 4 |
+
dataset_name: nigerian_transport_and_logistics_traffic_signal_timing
|
| 5 |
+
pretty_name: Nigeria Transport & Logistics – Traffic Signal Timing
|
| 6 |
+
size_categories: [10K<n<1M]
|
| 7 |
+
task_categories: [time-series-forecasting, tabular-regression, tabular-classification, other]
|
| 8 |
+
tags: [nigeria, transport, logistics, mobility, fleet, supply-chain]
|
| 9 |
+
language: [en]
|
| 10 |
+
created: 2025-10-12
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# Nigeria Transport & Logistics – Traffic Signal Timing
|
| 15 |
+
|
| 16 |
+
Intersection phases, cycle times, offsets, and optimization flags.
|
| 17 |
+
|
| 18 |
+
- **[category]** Infrastructure & Environment
|
| 19 |
+
- **[rows]** ~100,000
|
| 20 |
+
- **[formats]** CSV + Parquet (snappy)
|
| 21 |
+
- **[geography]** Nigeria (major cities, corridors, ports, airports)
|
| 22 |
+
|
| 23 |
+
## Schema
|
| 24 |
+
|
| 25 |
+
| column | dtype |
|
| 26 |
+
|---|---|
|
| 27 |
+
| intersection_id | object |
|
| 28 |
+
| phase | object |
|
| 29 |
+
| start_time | object |
|
| 30 |
+
| green_sec | int64 |
|
| 31 |
+
| yellow_sec | int64 |
|
| 32 |
+
| red_sec | int64 |
|
| 33 |
+
| cycle_time_sec | int64 |
|
| 34 |
+
| offset_sec | int64 |
|
| 35 |
+
| optimized | bool |
|
| 36 |
+
| corridor_id | object |
|
| 37 |
+
|
| 38 |
+
## Usage
|
| 39 |
+
|
| 40 |
+
```python
|
| 41 |
+
import pandas as pd
|
| 42 |
+
df = pd.read_parquet('data/nigerian_transport_and_logistics_traffic_signal_timing/nigerian_transport_and_logistics_traffic_signal_timing.parquet')
|
| 43 |
+
df.head()
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
```python
|
| 47 |
+
from datasets import load_dataset
|
| 48 |
+
ds = load_dataset('electricsheepafrica/nigerian_transport_and_logistics_traffic_signal_timing')
|
| 49 |
+
ds
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
## Notes
|
| 53 |
+
|
| 54 |
+
- Nigeria-specific parameters (fleets, roads, traffic, fuel prices)
|
| 55 |
+
- Time-of-day traffic effects and seasonal impacts where applicable
|
| 56 |
+
- Physical plausibility checks embedded during generation
|
nigerian_transport_and_logistics_traffic_signal_timing.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
nigerian_transport_and_logistics_traffic_signal_timing.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fec687b76be04c49fac9d7ca5653905c49577698578d0d31a24be19999f85768
|
| 3 |
+
size 2348052
|