--- license: mit dataset_info: features: - name: instance_id dtype: string - name: doc_type dtype: string - name: source dtype: string - name: url dtype: string - name: edu_pred_input dtype: string - name: ground_truth dtype: string splits: - name: test num_bytes: 32221618 num_examples: 248 download_size: 6102151 dataset_size: 32221618 configs: - config_name: default data_files: - split: test path: test/data.parquet --- # Dataset Card for StructBench ## Dataset Summary StructBench is a benchmark for evaluating fine-grained document structure analysis. It provides a high-quality test set of 248 documents in diverse formats, including 203 Web pages and 47 PDFs. To ensure reliable ground truth, all documents were: - Parsed and sentence-segmented - Manually annotated by human experts for discourse structure In addition to the structured annotations, raw Web pages and PDF files are included. ## Dataset Structure - **test/**: evaluation-only split - **data.parquet**: data samples - **raw_pdf_files/**: original PDF files - **raw_web_htmls/**: original WEB htmls ## Tasks - Discouse Analysis - Document Structure Parsing - Document Understanding ## Usage Clone the dataset: ```bash git clone https://huggingface.co/datasets/deeplang-ai/StructBench ``` Or load with Hugging Face datasets library: ```python from datasets import load_dataset dataset = load_dataset("deeplang-ai/StructBench", split="test") ``` ## Citation ```bibtex @misc{zhou2025contextedusfaithfulstructured, title={From Context to EDUs: Faithful and Structured Context Compression via Elementary Discourse Unit Decomposition}, author={Yiqing Zhou and Yu Lei and Shuzheng Si and Qingyan Sun and Wei Wang and Yifei Wu and Hao Wen and Gang Chen and Fanchao Qi and Maosong Sun}, year={2025}, eprint={2512.14244}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2512.14244}, } ```