Datasets:

Formats:
parquet
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
zhouyiqing commited on
Commit
244df2b
·
1 Parent(s): f26a36d

update readme

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md CHANGED
@@ -1,3 +1,81 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ dataset_info:
4
+ features:
5
+ - name: instance_id
6
+ dtype: string
7
+ - name: doc_type
8
+ dtype: string
9
+ - name: source
10
+ dtype: string
11
+ - name: url
12
+ dtype: string
13
+ - name: edu_pred_input
14
+ dtype: string
15
+ - name: ground_truth
16
+ dtype: string
17
+ splits:
18
+ - name: test
19
+ num_bytes: 32221618
20
+ num_examples: 248
21
+ download_size: 6102151
22
+ dataset_size: 32221618
23
+ configs:
24
+ - config_name: default
25
+ data_files:
26
+ - split: test
27
+ path: test/data.parquet
28
  ---
29
+
30
+ # Dataset Card for StructBench
31
+
32
+ ## Dataset Summary
33
+
34
+ StructBench is a benchmark for evaluating fine-grained document structure analysis. It provides a high-quality test set of 248 documents in diverse formats, including 203 Web pages and 47 PDFs.
35
+
36
+ To ensure reliable ground truth, all documents were:
37
+
38
+ - Parsed and sentence-segmented
39
+
40
+ - Manually annotated by human experts for discourse structure
41
+
42
+ In addition to the structured annotations, raw Web pages and PDF files are included.
43
+
44
+ ## Dataset Structure
45
+
46
+ - **test/**: evaluation-only split
47
+ - **data.parquet**: data samples
48
+ - **raw_pdf_files/**: original PDF files
49
+ - **raw_web_htmls/**: original WEB htmls
50
+
51
+ ## Tasks
52
+
53
+ - Discouse Analysis
54
+ - Document Structure Parsing
55
+ - Document Understanding
56
+
57
+ ## Usage
58
+
59
+ Clone the dataset:
60
+
61
+ ```bash
62
+ git clone https://huggingface.co/datasets/deeplang-ai/StructBench
63
+ ```
64
+
65
+ Or load with Hugging Face datasets library:
66
+
67
+ ```python
68
+ from datasets import load_dataset
69
+ dataset = load_dataset("deeplang-ai/StructBench", split="test")
70
+ ```
71
+
72
+ ## Citation
73
+
74
+ ```bibtex
75
+ @misc{deeplangai_structbench2025,
76
+ title={StructBench},
77
+ author={DeeplangAI},
78
+ year={2025},
79
+ howpublished={\url{https://huggingface.co/datasets/deeplang-ai/StructBench}}
80
+ }
81
+ ```