Datasets:

Formats:
parquet
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
StructBench / test /raw_web_htmls /4a1e0cd3-43a2-4177-ba7a-88edac935cd9.html
zhouyiqing
submit data
f26a36d
<!doctypehtml><html class=Preview lang=en-US><meta content=S0001457525000442 name=citation_pii><meta content=107958 name=citation_id><meta content=0001-4575 name=citation_issn><meta content=214 name=citation_volume><meta content=Pergamon name=citation_publisher><meta content=107958 name=citation_firstpage><meta content="Accident Analysis & Prevention"name=citation_journal_title><meta content=JOUR name=citation_type><meta content=10.1016/j.aap.2025.107958 name=citation_doi><meta content=10.1016/j.aap.2025.107958 name=dc.identifier><meta content="Full-length article"name=citation_article_type><meta content="Road traffic injuries represent a critical public health concern, particularly in developing nations such as Iran, where the incidence of fatal crashe…"property=og:description><meta content=https://ars.els-cdn.com/content/image/1-s2.0-S0001457525X00026-cov200h.gif property=og:image><meta content="Modelling low temporal, large spatial data of fatal crashes: An application of negative binomial GSARIMAX time series"name=citation_title><meta content="Modelling low temporal, large spatial data of fatal crashes: An application of negative binomial GSARIMAX time series"property=og:title><meta content=2025/05/01 name=citation_publication_date><meta content=2025/02/14 name=citation_online_date><meta content=INDEX,FOLLOW,NOARCHIVE,NOCACHE,NOODP,NOYDIR name=robots><title>Modelling low temporal, large spatial data of fatal crashes: An application of negative binomial GSARIMAX time series - ScienceDirect</title><link href=https://www.sciencedirect.com/science/article/abs/pii/S0001457525000442 rel=canonical><meta content=1 name=tdm-reservation><meta content=https://www.elsevier.com/tdm/tdmrep-policy.json name=tdm-policy><meta content=article property=og:type><meta content=initial-scale=1 name=viewport><meta content="Proudly brought to you by the SD Technology team"name=SDTech><link rel="shortcut icon"href=https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/103/images/favSD.ico type=image/x-icon><link href=https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/103/images/favSD.ico rel=icon type=image/x-icon><link href=https://sdfestaticassets-us-east-1.sciencedirectassets.com/prod/0bc4cc7facdf52e0123c9937833370a748280440/arp.css rel=stylesheet><link href=//cdn.pendo.io rel=dns-prefetch><link crossorigin href=https://cdn.pendo.io rel=preconnect><link href=https://smetrics.elsevier.com rel=dns-prefetch><link as=script href=https://scholar.google.com/scholar_js/casa.js rel=preload><link as=script href=https://www.googletagservices.com/tag/js/gpt.js rel=preload><link as=script href=https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=MML_SVG rel=preload><link as=script href=https://sdfestaticassets-us-east-1.sciencedirectassets.com/prod/0bc4cc7facdf52e0123c9937833370a748280440/arp.js rel=preload><link as=script href=https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/108/js/react-dom/18.3.1/react-dom.production.min.js rel=preload><link as=script href=https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/108/js/react/18.3.1/react.production.min.js rel=preload><body data-sd-ui-layer-boundary=true><noscript>JavaScript is disabled on your browser. Please enable JavaScript to use all the features on this page. <img src=https://smetrics.elsevier.com/b/ss/elsevier-sd-prod/1/G.4--NS/1741316029798?pageName=sd%3Aproduct%3Ajournal%3Aarticle&c16=els%3Arp%3Ast&c2=sd&v185=img&v33=ae%3AANON_GUEST&c1=ae%3A228598&c12=ae%3A12975512></noscript><a class="anchor sr-only sr-only-focusable u-display-inline anchor-primary"href=#screen-reader-main-content><span class=anchor-text-container><span class=anchor-text>Skip to main content</span></span></a><a class="anchor sr-only sr-only-focusable u-display-inline anchor-primary"href=#screen-reader-main-title><span class=anchor-text-container><span class=anchor-text>Skip to article</span></span></a><div id=root><div class=App data-aa-name=root id=app><div class=page><div class=sd-flex-container><div class=sd-flex-content><header id=gh-cnt><div class="u-flex-center-ver u-position-relative u-padding-s-hor u-padding-l-hor-from-xl"id=gh-main-cnt><a aria-label="ScienceDirect home page"class=u-flex-center-ver data-aa-name=ScienceDirect data-aa-region=header href=/ id=gh-branding><img alt="Elsevier logo"class=gh-logo height=48 src=https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/24/images/elsevier-non-solus-new-grey.svg width=54><svg alt="ScienceDirect Wordmark"class="gh-wordmark u-margin-s-left"viewbox="0 0 190 23"aria-hidden=true aria-labelledby=gh-wm-science-direct focusable=false height=15 role=img version=1.1 xmlns=http://www.w3.org/2000/svg><title id=gh-wm-science-direct>ScienceDirect</title><g><path d="M3.81 6.9c0-1.48 0.86-3.04 3.7-3.04 1.42 0 3.1 0.43 4.65 1.32l0.13-2.64c-1.42-0.63-2.97-0.96-4.78-0.96 -4.62 0-6.6 2.44-6.6 5.45 0 5.61 8.78 6.14 8.78 9.93 0 1.48-1.15 3.04-3.86 3.04 -1.72 0-3.4-0.56-4.72-1.39l-0.36 2.64c1.55 0.76 3.57 1.06 5.15 1.06 4.26 0 6.7-2.48 6.7-5.51C12.59 11.49 3.81 10.76 3.81 6.9M20.27 9.01c0.23-0.13 0.69-0.26 1.72-0.26 1.72 0 2.41 0.3 2.41 1.58h2.38c0-0.36 0-0.79-0.03-1.09 -0.23-1.98-2.15-2.67-4.88-2.67 -3 0-6.7 2.31-6.7 7.76 0 5.22 2.77 7.99 6.63 7.99 1.68 0 3.47-0.36 4.95-1.39l-0.2-2.31c-0.99 0.82-2.84 1.52-4.06 1.52 -2.14 0-4.55-1.71-4.55-5.91C17.93 10.2 20.01 9.18 20.27 9.01"fill=#EB6500></path><rect fill=#EB6500 height=14.95 width=2.54 x=29.42 y=6.97></rect><path d="M30.67 0.7c-0.92 0-1.65 0.92-1.65 1.81 0 0.93 0.76 1.85 1.65 1.85 0.89 0 1.68-0.96 1.68-1.88C32.35 1.55 31.56 0.7 30.67 0.7M48.06 14.13c0-5.18-1.42-7.56-6.01-7.56 -3.86 0-6.67 2.77-6.67 7.92 0 4.92 2.97 7.82 6.73 7.82 2.81 0 4.36-0.63 5.68-1.42l-0.2-2.31c-0.89 0.79-2.94 1.55-4.69 1.55 -3.14 0-4.88-1.95-4.88-5.51v-0.49H48.06M39.91 9.18c0.17-0.17 1.29-0.46 1.98-0.46 2.48 0 3.76 0.53 3.86 3.43h-7.46C38.56 10.27 39.71 9.37 39.91 9.18zM58.82 6.57c-2.24 0-3.63 1.12-4.85 2.61l-0.4-2.21h-2.34l0.13 1.19c0.1 0.76 0.13 1.78 0.13 2.97v10.79h2.54V11.88c0.69-0.96 2.15-2.48 2.48-2.64 0.23-0.13 1.29-0.4 2.08-0.4 2.28 0 2.48 1.15 2.54 3.43 0.03 1.19 0.03 3.17 0.03 3.17 0.03 3-0.1 6.47-0.1 6.47h2.54c0 0 0.07-4.49 0.07-6.96 0-1.48 0.03-2.97-0.1-4.46C63.31 7.43 61.49 6.57 58.82 6.57M72.12 9.01c0.23-0.13 0.69-0.26 1.72-0.26 1.72 0 2.41 0.3 2.41 1.58h2.38c0-0.36 0-0.79-0.03-1.09 -0.23-1.98-2.15-2.67-4.88-2.67 -3 0-6.7 2.31-6.7 7.76 0 5.22 2.77 7.99 6.63 7.99 1.68 0 3.47-0.36 4.95-1.39l-0.2-2.31c-0.99 0.82-2.84 1.52-4.06 1.52 -2.15 0-4.55-1.71-4.55-5.91C69.77 10.2 71.85 9.18 72.12 9.01M92.74 14.13c0-5.18-1.42-7.56-6.01-7.56 -3.86 0-6.67 2.77-6.67 7.92 0 4.92 2.97 7.82 6.73 7.82 2.81 0 4.36-0.63 5.68-1.42l-0.2-2.31c-0.89 0.79-2.94 1.55-4.69 1.55 -3.14 0-4.88-1.95-4.88-5.51v-0.49H92.74M84.59 9.18c0.17-0.17 1.29-0.46 1.98-0.46 2.48 0 3.76 0.53 3.86 3.43h-7.46C83.24 10.27 84.39 9.37 84.59 9.18zM103.9 1.98h-7.13v19.93h6.83c7.26 0 9.77-5.68 9.77-10.03C113.37 7.33 110.93 1.98 103.9 1.98M103.14 19.8h-3.76V4.1h4.09c5.38 0 6.96 4.39 6.96 7.79C110.43 16.87 108.19 19.8 103.14 19.8zM118.38 0.7c-0.92 0-1.65 0.92-1.65 1.81 0 0.93 0.76 1.85 1.65 1.85 0.89 0 1.69-0.96 1.69-1.88C120.07 1.55 119.28 0.7 118.38 0.7"fill=#EB6500></path><rect fill=#EB6500 height=14.95 width=2.54 x=117.13 y=6.97></rect><path d="M130.2 6.6c-1.62 0-2.87 1.45-3.4 2.74l-0.43-2.37h-2.34l0.13 1.19c0.1 0.76 0.13 1.75 0.13 2.9v10.86h2.54v-9.51c0.53-1.29 1.72-3.7 3.17-3.7 0.96 0 1.06 0.99 1.06 1.22l2.08-0.6V9.18c0-0.03-0.03-0.17-0.06-0.4C132.8 7.36 131.91 6.6 130.2 6.6M145.87 14.13c0-5.18-1.42-7.56-6.01-7.56 -3.86 0-6.67 2.77-6.67 7.92 0 4.92 2.97 7.82 6.73 7.82 2.81 0 4.36-0.63 5.68-1.42l-0.2-2.31c-0.89 0.79-2.94 1.55-4.69 1.55 -3.14 0-4.89-1.95-4.89-5.51v-0.49H145.87M137.72 9.18c0.17-0.17 1.29-0.46 1.98-0.46 2.48 0 3.76 0.53 3.86 3.43h-7.46C136.37 10.27 137.52 9.37 137.72 9.18zM153.23 9.01c0.23-0.13 0.69-0.26 1.72-0.26 1.72 0 2.41 0.3 2.41 1.58h2.38c0-0.36 0-0.79-0.03-1.09 -0.23-1.98-2.14-2.67-4.88-2.67 -3 0-6.7 2.31-6.7 7.76 0 5.22 2.77 7.99 6.63 7.99 1.69 0 3.47-0.36 4.95-1.39l-0.2-2.31c-0.99 0.82-2.84 1.52-4.06 1.52 -2.15 0-4.55-1.71-4.55-5.91C150.89 10.2 152.97 9.18 153.23 9.01M170 19.44c-0.92 0.36-1.72 0.69-2.51 0.69 -1.16 0-1.58-0.66-1.58-2.34V8.95h3.93V6.97h-3.93V2.97h-2.48v3.99h-2.71v1.98h2.71v9.67c0 2.64 1.39 3.73 3.33 3.73 1.15 0 2.54-0.39 3.43-0.79L170 19.44M173.68 5.96c-1.09 0-2-0.87-2-1.97 0-1.1 0.91-1.97 2-1.97s1.98 0.88 1.98 1.98C175.66 5.09 174.77 5.96 173.68 5.96zM173.67 2.46c-0.85 0-1.54 0.67-1.54 1.52 0 0.85 0.69 1.54 1.54 1.54 0.85 0 1.54-0.69 1.54-1.54C175.21 3.13 174.52 2.46 173.67 2.46zM174.17 5.05c-0.09-0.09-0.17-0.19-0.25-0.3l-0.41-0.56h-0.16v0.87h-0.39V2.92c0.22-0.01 0.47-0.03 0.66-0.03 0.41 0 0.82 0.16 0.82 0.64 0 0.29-0.21 0.55-0.49 0.63 0.23 0.32 0.45 0.62 0.73 0.91H174.17zM173.56 3.22l-0.22 0.01v0.63h0.22c0.26 0 0.43-0.05 0.43-0.34C174 3.28 173.83 3.21 173.56 3.22z"fill=#EB6500></path></g></svg></a><div class="gh-nav-cnt u-hide-from-print"><div class="gh-nav-links-container gh-nav-links-container-h u-hide-from-print gh-nav-content-container"><nav class="gh-nav gh-nav-links gh-nav-h"aria-label=links><ul class="gh-nav-list u-list-reset"><li class="gh-nav-item gh-move-to-spine"><a class="anchor gh-nav-action text-s anchor-secondary anchor-medium"data-aa-name="Journals & Books"data-aa-region=header href=/browse/journals-and-books id=gh-journals-books-link><span class=anchor-text-container><span class=anchor-text>Journals & Books</span></span></a></ul></nav><nav class="gh-nav gh-nav-utilities gh-nav-h"aria-label=utilities><ul class="gh-nav-list u-list-reset"><li class="gh-nav-help text-s u-flex-center-ver u-gap-6 gh-nav-action"><div class="gh-move-to-spine gh-help-button gh-help-icon gh-nav-item"><div class=popover id=gh-help-icon-popover><div id=popover-trigger-gh-help-icon-popover><input type=hidden><button class="button-link button-link-secondary gh-icon-btn button-link-medium button-link-icon-left"aria-expanded=false type=button><svg class="icon icon-help gh-icon"viewbox="0 0 114 128"focusable=false height=20 width=20><path d="M57 8C35.69 7.69 15.11 21.17 6.68 40.71c-8.81 19.38-4.91 43.67 9.63 59.25 13.81 15.59 36.85 21.93 56.71 15.68 21.49-6.26 37.84-26.81 38.88-49.21 1.59-21.15-10.47-42.41-29.29-52.1C74.76 10.17 65.88 7.99 57 8zm0 10c20.38-.37 39.57 14.94 43.85 34.85 4.59 18.53-4.25 39.23-20.76 48.79-17.05 10.59-40.96 7.62-54.9-6.83-14.45-13.94-17.42-37.85-6.83-54.9C26.28 26.5 41.39 17.83 57 18zm-.14 14C45.31 32.26 40 40.43 40 50v2h10v-2c0-4.22 2.22-9.66 8-9.24 5.5.4 6.32 5.14 5.78 8.14C62.68 55.06 52 58.4 52 69.4V76h10v-5.56c0-8.16 11.22-11.52 12-21.7.74-9.86-5.56-16.52-16-16.74-.39-.01-.76-.01-1.14 0zM52 82v10h10V82H52z"></path></svg><span class=button-link-text-container><span class=button-link-text>Help</span></span></button></div></div></div><li class="gh-nav-search text-s u-flex-center-ver u-gap-6 gh-nav-action"><div class="gh-search-toggle gh-nav-item search-button-link"><a class="anchor button-link-secondary anchor-secondary u-margin-l-left gh-nav-action gh-icon-btn anchor-medium anchor-icon-left anchor-with-icon"data-aa-button=search-in-header-opened-from-article href=/search id=gh-search-link role=button><svg class="icon icon-search gh-icon"viewbox="0 0 100 128"focusable=false height=20><path d="M19.22 76.91c-5.84-5.84-9.05-13.6-9.05-21.85s3.21-16.01 9.05-21.85c5.84-5.83 13.59-9.05 21.85-9.05 8.25 0 16.01 3.22 21.84 9.05 5.84 5.84 9.05 13.6 9.05 21.85s-3.21 16.01-9.05 21.85c-5.83 5.83-13.59 9.05-21.84 9.05-8.26 0-16.01-3.22-21.85-9.05zm80.33 29.6L73.23 80.19c5.61-7.15 8.68-15.9 8.68-25.13 0-10.91-4.25-21.17-11.96-28.88-7.72-7.71-17.97-11.96-28.88-11.96S19.9 18.47 12.19 26.18C4.47 33.89.22 44.15.22 55.06s4.25 21.17 11.97 28.88C19.9 91.65 30.16 95.9 41.07 95.9c9.23 0 17.98-3.07 25.13-8.68l26.32 26.32 7.03-7.03"></path></svg><span class=anchor-text-container><span class=anchor-text>Search</span></span></a></div></ul></nav></div></div><div class="gh-profile-container gh-move-to-spine u-hide-from-print"><a class="anchor text-s u-clr-grey8 u-margin-l-left gh-icon-btn anchor-primary anchor-medium anchor-icon-left anchor-with-icon"data-aa-name=personalsignin data-aa-region=header href=/user/login?targetURL=%2Fscience%2Farticle%2Fpii%2FS0001457525000442&from=globalheader id=gh-myaccount-btn><svg class="icon icon-person gh-cta-btn-icon"viewbox="0 0 106 128"aria-hidden=true focusable=false height=20><path d="M11.07 120l.84-9.29C13.88 91.92 35.25 87.78 53 87.78c17.74 0 39.11 4.13 41.08 22.84l.84 9.38h10.04l-.93-10.34C101.88 89.23 83.89 78 53 78S4.11 89.22 1.95 109.73L1.04 120h10.03M53 17.71c-9.72 0-18.24 8.69-18.24 18.59 0 13.67 7.84 23.98 18.24 23.98S71.24 49.97 71.24 36.3c0-9.9-8.52-18.59-18.24-18.59zM53 70c-15.96 0-28-14.48-28-33.67C25 20.97 37.82 8 53 8s28 12.97 28 28.33C81 55.52 68.96 70 53 70"></path></svg><span class=anchor-text-container><span class=anchor-text>My account</span></span></a></div><a class="anchor text-s u-clr-grey8 gh-move-to-spine u-hide-from-print u-margin-l-left anchor-secondary gh-icon-btn anchor-medium anchor-icon-left anchor-with-icon"data-aa-name=institutionalsignin data-aa-region=header href=/user/institution/login?targetURL=%2Fscience%2Farticle%2Fpii%2FS0001457525000442 id=gh-institutionalsignin-btn><svg class="icon icon-institution gh-cta-btn-icon"viewbox="0 0 106 128"aria-hidden=true focusable=false height=20><path d="M84 98h10v10H12V98h10V52h14v46h10V52h14v46h10V52h14v46zM12 36.86l41-20.84 41 20.84V42H12v-5.14zM104 52V30.74L53 4.8 2 30.74V52h10v36H2v30h102V88H94V52h10z"></path></svg><span class=anchor-text-container><span class=anchor-text>Sign in</span></span></a><div class="mobile-menu u-hide-from-print"id=gh-mobile-menu><div class="gh-hamburger u-fill-grey7"><button aria-label="Toggle mobile menu"class="button-link u-flex-center-ver button-link-primary button-link-icon-left"aria-expanded=false type=button><svg class="gh-hamburger-svg-el gh-hamburger-closed"aria-hidden=true height=20 role=img width=20><path d="M0 14h40v2H0zm0-7h40v2H0zm0-7h40v2H0z"></path></svg></button></div><div class="mobile-menu-overlay u-overlay u-display-none"id=gh-overlay role=button tabindex=-1></div><div aria-label="Mobile menu"id=gh-drawer role=navigation></div></div></div></header><div class="Article Preview"id=mathjax-container role=main><div class=accessbar-sticky><div id=screen-reader-main-content></div><div aria-label="Download options and search"role=region><div class=accessbar><div class=accessbar-label></div><ul aria-label="PDF Options"><li class="accessbar-item-show-from-initial accessbar-item-show-from-xs accessbar-item-show-from-md RemoteAccess"><a aria-label="Access through your organization"class="link-button RemoteAccessButton accessbar-utility-component accessbar-utility-link link-button-primary link-button-icon-left"href=/user/institution/login?targetUrl=%2Fscience%2Farticle%2Fpii%2FS0001457525000442><svg aria-label="Seamless access"class="icon icon-institution"viewbox="0 0 106 128"focusable=false height=20 role=img><path d="M84 98h10v10H12V98h10V52h14v46h10V52h14v46h10V52h14v46zM12 36.86l41-20.84 41 20.84V42H12v-5.14zM104 52V30.74L53 4.8 2 30.74V52h10v36H2v30h102V88H94V52h10z"></path></svg><span class=link-button-text-container><span class=link-button-text><span>Access through <strong>your organization</strong></span></span></span></a><li class="accessbar-item-hide-from-initial accessbar-item-hide-from-xs accessbar-item-show-from-md PurchasePDF"><a aria-label="Purchase PDF"class="anchor accessbar-utility-component accessbar-utility-link anchor-primary"rel="noreferrer noopener"href=/getaccess/pii/S0001457525000442/purchase target=_blank><span class=anchor-text-container><span class=anchor-text><span>Purchase PDF</span></span></span></a><li class="accessbar-item-hide-from-initial accessbar-item-hide-from-xs accessbar-item-show-from-md Divider"><span class=accessbar-divider></span><li class="accessbar-item-hide-from-initial accessbar-item-hide-from-xs accessbar-item-show-from-md PatientAccess"><a aria-label="Patient Access"class="anchor accessbar-utility-component accessbar-utility-link anchor-primary"rel="noreferrer noopener"href=https://www.elsevier.com/open-science/science-and-society/access-for-healthcare-and-patients target=_blank><span class=anchor-text-container><span class=anchor-text><span>Patient Access</span></span></span></a><li class="accessbar-item-show-from-initial accessbar-item-show-from-xs accessbar-item-hide-from-md OverflowPopover"><div class="popover accessbar-overflow-popover"id=OverflowPopoverAnchor><div id=popover-trigger-OverflowPopoverAnchor><button aria-label="Other access options"class="button-link accessbar-utility-component button-link-primary button-link-icon-right"type=button><span class=button-link-text-container><span class=button-link-text><span>Other access options</span></span></span><svg class="icon icon-navigate-down"viewbox="0 0 92 128"focusable=false height=20><path d="M1 51l7-7 38 38 38-38 7 7-45 45z"></path></svg></button></div></div></ul><form action=/search#submit aria-label=form class=QuickSearch><div class=search-input><div class="search-input-container search-input-container-no-label"><label class="search-input-label u-hide-visually"for=article-quick-search>Search ScienceDirect</label><input aria-label="Search ScienceDirect"placeholder="Search ScienceDirect"aria-describedby=article-quick-search-description-message aria-invalid=false class=search-input-field id=article-quick-search name=qs type=search></div><div class=search-input-message-container><div aria-live=polite class=search-input-validation-error></div><div id=article-quick-search-description-message></div></div></div><button aria-label="Submit search"class="button u-margin-xs-left button-primary small button-icon-only"aria-disabled=false><svg class="icon icon-search"viewbox="0 0 100 128"focusable=false height=20><path d="M19.22 76.91c-5.84-5.84-9.05-13.6-9.05-21.85s3.21-16.01 9.05-21.85c5.84-5.83 13.59-9.05 21.85-9.05 8.25 0 16.01 3.22 21.84 9.05 5.84 5.84 9.05 13.6 9.05 21.85s-3.21 16.01-9.05 21.85c-5.83 5.83-13.59 9.05-21.84 9.05-8.26 0-16.01-3.22-21.85-9.05zm80.33 29.6L73.23 80.19c5.61-7.15 8.68-15.9 8.68-25.13 0-10.91-4.25-21.17-11.96-28.88-7.72-7.71-17.97-11.96-28.88-11.96S19.9 18.47 12.19 26.18C4.47 33.89.22 44.15.22 55.06s4.25 21.17 11.97 28.88C19.9 91.65 30.16 95.9 41.07 95.9c9.23 0 17.98-3.07 25.13-8.68l26.32 26.32 7.03-7.03"></path></svg></button><input name=origin type=hidden value=article><input name=zone type=hidden value=qSearch></form></div></div></div><div class="article-wrapper u-padding-s-top grid row"><div aria-label="Table of Contents"class="preview-sidebar u-display-block-from-lg col-lg-6"role=navigation><div class=PreviewTableOfContents><h2 class="u-h4 preview-table-of-contents-title">Article preview</h2><ul class=preview-table-of-contents-list><li id=preview-section-abstract-item><a class="anchor anchor-primary"href=#preview-section-abstract><span class=anchor-text-container><span class=anchor-text>Abstract</span></span></a><li id=preview-section-introduction-item><a class="anchor anchor-primary"href=#preview-section-introduction><span class=anchor-text-container><span class=anchor-text>Introduction</span></span></a><li id=preview-section-snippets-item><a class="anchor anchor-primary"href=#preview-section-snippets><span class=anchor-text-container><span class=anchor-text>Section snippets</span></span></a><li id=preview-section-references-item><a class="anchor anchor-primary"href=#preview-section-references><span class=anchor-text-container><span class=anchor-text>References (65)</span></span></a></ul></div></div><article class="col-lg-12 col-md-16 pad-left pad-right"lang=en><div class=Publication id=publication><div class="publication-brand u-display-block-from-sm"><a class="anchor u-display-flex anchor-primary"title="Go to Accident Analysis & Prevention on ScienceDirect"href=/journal/accident-analysis-and-prevention><span class=anchor-text-container><span class=anchor-text><img alt=Elsevier class=publication-brand-image src=https://sdfestaticassets-us-east-1.sciencedirectassets.com/prod/0bc4cc7facdf52e0123c9937833370a748280440/image/elsevier-non-solus.svg></span></span></a></div><div class="publication-volume u-text-center"><h2 class="publication-title u-h3"id=publication-title><a class="anchor anchor-secondary publication-title-link"title="Go to Accident Analysis & Prevention on ScienceDirect"href=/journal/accident-analysis-and-prevention><span class=anchor-text-container><span class=anchor-text>Accident Analysis & Prevention</span></span></a></h2><div class=text-xs><a class="anchor anchor-primary"title="Go to table of contents for this volume/issue"href=/journal/accident-analysis-and-prevention/vol/214/suppl/C><span class=anchor-text-container><span class=anchor-text>Volume 214</span></span></a>, May 2025, 107958</div></div><div class="publication-cover u-display-block-from-sm"><a class="anchor u-display-flex anchor-primary"href=/journal/accident-analysis-and-prevention/vol/214/suppl/C><span class=anchor-text-container><span class=anchor-text><img alt="Accident Analysis & Prevention"class=publication-cover-image src=https://ars.els-cdn.com/content/image/1-s2.0-S0001457525X00026-cov200h.gif></span></span></a></div></div><div class=PageDivider></div><h1 class="Head u-font-serif u-h2 u-margin-s-ver"id=screen-reader-main-title><span class=title-text>Modelling low temporal, large spatial data of fatal crashes: An application of negative binomial GSARIMAX time series</span></h1><div class=Banner id=banner><div class="wrapper truncated"><div aria-live=polite></div><div class=AuthorGroups><div class=author-group id=author-group><span class=sr-only>Author links open overlay panel</span><button class="button-link button-link-secondary button-link-underline"data-sd-ui-side-panel-opener=true data-xocs-content-id=au005 data-xocs-content-type=author type=button><span class=button-link-text-container><span class=button-link-text><span class=react-xocs-alternative-link><span class=given-name>Sara</span> <span class="text surname">Ghalehnovi</span> </span><span class=author-ref id=baf005><sup>a</sup></span></span></span></button>, <button class="button-link button-link-secondary button-link-underline"data-sd-ui-side-panel-opener=true data-xocs-content-id=au010 data-xocs-content-type=author type=button><span class=button-link-text-container><span class=button-link-text><span class=react-xocs-alternative-link><span class=given-name>Abolfazl</span> <span class="text surname">Mohammadzadeh Moghaddam</span> </span><span class=author-ref id=baf005><sup>a</sup></span><svg class="icon icon-person react-xocs-author-icon u-fill-grey8"title="Correspondence author icon"viewbox="0 0 106 128"focusable=false height=20><path d="M11.07 120l.84-9.29C13.88 91.92 35.25 87.78 53 87.78c17.74 0 39.11 4.13 41.08 22.84l.84 9.38h10.04l-.93-10.34C101.88 89.23 83.89 78 53 78S4.11 89.22 1.95 109.73L1.04 120h10.03M53 17.71c-9.72 0-18.24 8.69-18.24 18.59 0 13.67 7.84 23.98 18.24 23.98S71.24 49.97 71.24 36.3c0-9.9-8.52-18.59-18.24-18.59zM53 70c-15.96 0-28-14.48-28-33.67C25 20.97 37.82 8 53 8s28 12.97 28 28.33C81 55.52 68.96 70 53 70"></path></svg><svg class="icon icon-envelope react-xocs-author-icon u-fill-grey8"title="Author email or social media contact details icon"viewbox="0 0 102 128"focusable=false height=20><path d="M55.8 57.2c-1.78 1.31-5.14 1.31-6.9 0L17.58 34h69.54L55.8 57.19zM0 32.42l42.94 32.62c2.64 1.95 6.02 2.93 9.4 2.93s6.78-.98 9.42-2.93L102 34.34V24H0zM92 88.9L73.94 66.16l-8.04 5.95L83.28 94H18.74l18.38-23.12-8.04-5.96L10 88.94V51.36L0 42.9V104h102V44.82l-10 8.46V88.9"></path></svg></span></span></button>, <button class="button-link button-link-secondary button-link-underline"data-sd-ui-side-panel-opener=true data-xocs-content-id=au015 data-xocs-content-type=author type=button><span class=button-link-text-container><span class=button-link-text><span class=react-xocs-alternative-link><span class=given-name>Seyed Iman</span> <span class="text surname">Mohammadpour</span> </span><span class=author-ref id=baf010><sup>b</sup></span></span></span></button></div></div></div><button class="button-link u-margin-s-ver button-link-primary button-link-icon-right"data-aa-button=icon-expand id=show-more-btn type=button><span class=button-link-text-container><span class=button-link-text>Show more</span></span><svg class="icon icon-navigate-down"viewbox="0 0 92 128"focusable=false height=20><path d="M1 51l7-7 38 38 38-38 7 7-45 45z"></path></svg></button><div class="banner-options u-padding-xs-bottom"><button class="button-link AddToMendeley button-link-secondary u-margin-s-right u-display-inline-flex-from-md button-link-icon-left button-link-has-colored-icon"type=button><svg class="icon icon-plus"viewbox="0 0 86 128"focusable=false height=20><path d="M48 58V20H38v38H0v10h38v38h10V68h38V58z"></path></svg><span class=button-link-text-container><span class=button-link-text>Add to Mendeley</span></span></button><div class="Social u-display-inline-block"id=social><div class="popover social-popover"id=social-popover><div id=popover-trigger-social-popover><button class="button-link button-link-secondary u-margin-s-right button-link-icon-left button-link-has-colored-icon"aria-expanded=false aria-haspopup=true type=button><svg class="icon icon-share"viewbox="0 0 114 128"focusable=false height=20><path d="M90 112c-6.62 0-12-5.38-12-12s5.38-12 12-12 12 5.38 12 12-5.38 12-12 12zM24 76c-6.62 0-12-5.38-12-12s5.38-12 12-12 12 5.38 12 12-5.38 12-12 12zm66-60c6.62 0 12 5.38 12 12s-5.38 12-12 12-12-5.38-12-12 5.38-12 12-12zm0 62c-6.56 0-12.44 2.9-16.48 7.48L45.1 70.2c.58-1.98.9-4.04.9-6.2s-.32-4.22-.9-6.2l28.42-15.28C77.56 47.1 83.44 50 90 50c12.14 0 22-9.86 22-22S102.14 6 90 6s-22 9.86-22 22c0 1.98.28 3.9.78 5.72L40.14 49.1C36.12 44.76 30.38 42 24 42 11.86 42 2 51.86 2 64s9.86 22 22 22c6.38 0 12.12-2.76 16.14-7.12l28.64 15.38c-.5 1.84-.78 3.76-.78 5.74 0 12.14 9.86 22 22 22s22-9.86 22-22-9.86-22-22-22z"></path></svg><span class=button-link-text-container><span class=button-link-text>Share</span></span></button></div></div></div><div class="ExportCitation u-display-inline-block"id=export-citation><div class="popover export-citation-popover"id=export-citation-popover><div id=popover-trigger-export-citation-popover><button class="button-link button-link-secondary button-link-icon-left button-link-has-colored-icon"aria-expanded=false aria-haspopup=true type=button><svg class="icon icon-cited-by-66"viewbox="0 0 104 128"focusable=false height=20><path d="M2 58.78V106h44V64H12v-5.22C12 40.28 29.08 32 46 32V22C20.1 22 2 37.12 2 58.78zM102 32V22c-25.9 0-44 15.12-44 36.78V106h44V64H68v-5.22C68 40.28 85.08 32 102 32z"></path></svg><span class=button-link-text-container><span class=button-link-text>Cite</span></span></button></div></div></div></div></div><div class="ArticleIdentifierLinks u-margin-xs-bottom text-xs"id=article-identifier-links><a aria-label="Persistent link using digital object identifier"class="anchor doi anchor-primary"rel="noreferrer noopener"title="Persistent link using digital object identifier"href=https://doi.org/10.1016/j.aap.2025.107958 target=_blank><span class=anchor-text-container><span class=anchor-text>https://doi.org/10.1016/j.aap.2025.107958</span><svg aria-label="Opens in new window"class="icon icon-arrow-up-right-tiny arrow-external-link"viewbox="0 0 8 8"focusable=false height=20><path d="M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z"></path></svg></span></a><a class="anchor rights-and-content anchor-primary"rel="noreferrer noopener"href=https://s100.copyright.com/AppDispatchServlet?publisherName=ELS&contentID=S0001457525000442&orderBeanReset=true target=_blank><span class=anchor-text-container><span class=anchor-text>Get rights and content</span><svg aria-label="Opens in new window"class="icon icon-arrow-up-right-tiny arrow-external-link"viewbox="0 0 8 8"focusable=false height=20><path d="M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z"></path></svg></span></a></div><section class=ReferencedArticles></section><section class=ReferencedArticles></section><div id=preview-section-abstract><div class=PageDivider></div><div class="Abstracts u-font-serif"id=abstracts><div class="abstract author-highlights"id=ab005 lang=en><h2 class="section-title u-h4 u-margin-l-top u-margin-xs-bottom">Highlights</h2><div id=as005><div class=u-margin-s-bottom id=sp0005><ul class=list><li class=react-xocs-list-item><span class=list-label></span><span><div class=u-margin-s-bottom id=p0005>GSARIMA models daily fatal crashes using 8 years (2014-2022) of Iran's data.</div></span><li class=react-xocs-list-item><span class=list-label></span><span><div class=u-margin-s-bottom id=p0010>Compared Negative Binomial GSARIMA vs. Gaussian GSARIMA for 2,920 crash counts.</div></span><li class=react-xocs-list-item><span class=list-label></span><span><div class=u-margin-s-bottom id=p0015>Data includes 2,920 days of crashes, traffic volume, and weather conditions.</div></span><li class=react-xocs-list-item><span class=list-label></span><span><div class=u-margin-s-bottom id=p0020>Achieved low MARE (&LT10%) in models with large spatial and low temporal data.</div></span><li class=react-xocs-list-item><span class=list-label></span><span><div class=u-margin-s-bottom id=p0025>GSARIMA outperforms Gaussian by 15% in modeling seasonal crash data.</div></span></ul></div></div></div><div class="abstract author"id=ab010><h2 class="section-title u-h4 u-margin-l-top u-margin-xs-bottom">Abstract</h2><div id=as010><div class=u-margin-s-bottom id=sp0010>Road traffic injuries represent a critical public health concern, particularly in developing nations such as Iran, where the incidence of fatal crashes is escalating. Addressing this issue effectively requires sophisticated analytical methodologies to elucidate and mitigate the multifaceted factors contributing to traffic fatalities. This study introduces the Negative Binomial Generalized Seasonal Autoregressive Integrated Moving Average with Exogenous Variables (GSARIMAX) model as an innovative approach for analyzing low temporal (daily) and large spatial count data of fatal crashes over a ten-year period (March 2014 to March 2022) in Iran. Unlike traditional models that predominantly focus on aggregated monthly or high-resolution data, the proposed negative binomial GSARIMAX model leverages daily count data, accommodating over-dispersion inherent in crash counts and providing a more granular and accurate analysis across extensive spatial regions. The model integrates significant exogenous variables, including traffic volume, maximum and minimum temperatures, wind speed, and wind direction, alongside harmonic seasonal components to capture both annual and semi-annual periodic fluctuations in crash occurrences. Model performance was rigorously evaluated using Deviance Information Criterion (DIC) and Mean Absolute Relative Error (MARE) metrics, alongside out-of-sample predictive accuracy assessments. The negative binomial GSARIMAX (0,1,2)-SOH model demonstrated superior performance compared to the Gaussian GSARIMAX counterpart, evidenced by lower MARE and DIC values. Notably, traffic volume and maximum temperature emerged as significant predictors of fatal crashes, while seasonal harmonic terms further enhanced model accuracy by effectively capturing temporal dynamics. The Bayesian estimation framework employed facilitates robust inference and the analysis of posterior predictive distributions, affirming the Negative Binomial GSARIMAX model’s superior fit and forecasting capabilities. These findings underscore the model’s potential advantages over conventional Gaussian statistical methods, particularly in handling low temporal resolution and large spatial datasets. Moreover, dynamic models incorporating exogenous variables demonstrated enhanced predictive performance, highlighting the importance of integrating diverse factors in crash analysis. This study not only advances the methodological landscape for traffic crash analysis but also provides actionable insights for policymakers and safety authorities. By identifying key determinants of fatal crashes and accounting for seasonal variations, the Negative Binomial GSARIMAX model serves as a valuable tool for informing targeted interventions aimed at reducing traffic fatalities. Future research should extend this approach by incorporating additional environmental and behavioral variables and conducting comparative analyses across multiple provinces to capture a broader spectrum of influencing conditions.</div></div></div></div></div><div id=preview-section-introduction><div class=PageDivider></div><div class="Introduction u-font-serif u-margin-l-ver"><h2 class="u-h4 u-margin-s-bottom">Introduction</h2><section id=s0005><div class=u-margin-s-bottom id=p0040>Road traffic crashes remain a significant public health concern globally, with the World Health Organization (WHO) reporting in 2021 that approximately 3,260 individuals lose their lives each day due to this issue (World Health Organization, 2023). These crashes account for approximately 1.35 million fatalities annually, with over 90 % occurring in low- and middle-income countries (LMICs) (Geneva: World Health Organization, 2018). The economic consequences are similarly substantial, costing LMICs 1–2 % of their gross national product and exceeding $100 billion annually (Jacobs et al., 2000). Projections indicate that road traffic injuries will become the seventh leading cause of death by 2030, underscoring the urgent need for appropriate countermeasures to reduce fatal crashes, especially in LMICs (World Health Organization, 2015, Geneva: World Health Organization, 2018, Wegman et al., 2017). In Iran, the annual motor vehicle crash death rate of 20.5 per 100,000 population exceeds the global average of 18.2, despite the implementation of a Road Safety Strategic Plan aimed at addressing this issue (WHO, 2018). With a population of 85 million and over 30 million motorized vehicles, road crashes in the country impose substantial economic costs, estimated at 2.19 % of the national GDP (Rezaei et al., 2014). Beyond the immediate economic consequences, road traffic crashes result in significant emotional trauma, psychological effects, and permanent disabilities.</div><div class=u-margin-s-bottom id=p0045>Reducing motor vehicle fatalities is crucial due to their profound societal impact. By analyzing patterns and preventive measures over time, it is possible to evaluate policy effectiveness in improving road safety and address this pressing issue. The development of effective traffic safety policies is contingent upon the accurate forecasting of future trends in motor vehicle crashes. This process is heavily dependent upon the utilization of suitable methodologies.</div><div class=u-margin-s-bottom id=p0050>While significant strides have been made in the realm of crash trend prediction and time series modeling, a predominant focus on monthly or annual data has occurred, thus overlooking the dynamic nature of daily fatal crash occurrences. Furthermore, there has been limited research integrating exogenous variables such as traffic volume and weather conditions into daily fatal crash prediction models. This study aims to address these gaps by employing advanced time series models.</div><div class=u-margin-s-bottom id=p0055>The study's objectives include evaluating the performance of the GSARIMAX model using Bayesian estimation in order to obtain robust inference in predicting daily fatal crash trends and investigating a dynamic model incorporating exogenous daily factors such as traffic volume and weather conditions on the seasonality and autocorrelation of the model, thus enhancing future crash trend predictions. Additionally, comparing the Gaussian SARIMAX model with the negative binominal GSARIMAX model and examining their behavior and accuracy on discrete data are crucial aspects of this research.</div><div class=u-margin-s-bottom id=p0060>The rest of the paper is structured as follows: Section 2 provides a thorough review of the extant literature, emphasizing prior studies and identifying existing research gaps. Section 3 details the data sources utilized and the composition of the dataset. Section 4 outlines the methods employed, incorporating the Gaussian SARIMAX and GSARIMAX models. Section 5 presents the discussion and results obtained after fitting the models to the data. Finally, Section 6 presents the conclusions, recommendations, and limitations of the study.</div></section></div></div><div id=preview-section-snippets><div class=PageDivider></div><div class="Snippets u-font-serif"><h2 class="u-h4 u-margin-l-ver">Section snippets</h2><section><section id=s0010><h2 class="section-title u-h4 u-margin-l-top u-margin-xs-bottom">Literature review</h2><div class=u-margin-s-bottom id=p0065>Examining policy implications can benefit from employing time series analysis, a method used at a broader scale (Kisely and Lawrence, 2015, Pun et al., 2013). Meanwhile, at a more detailed level, methods like temporal and spatio-temporal multivariate random-parameters Tobit models are available (Zeng et al., 2018, Zeng et al., 2019). However, it should be noted that the efficacy of these methodologies in adequately addressing the impact of serial correlation in long-time series count data is</div></section></section><section><section id=s0015><h2 class="section-title u-h4 u-margin-l-top u-margin-xs-bottom">Data</h2><div class=u-margin-s-bottom id=p0120>The study examined daily crash data from Iran's intercity highways, sourced from the records of the National Traffic Police (NAJA). Additionally, the cumulative daily traffic volume on Iran's intercity highways is compiled from daily reports provided by the Ministry of Roads and Urban Development (MRUD), utilizing data collected by 2604 nationwide highway loop detectors. In addition, the weather data, encompassing minimum and maximum temperatures, average wind speed, and wind direction, were</div></section></section><section><section id=s0020><h2 class="section-title u-h4 u-margin-l-top u-margin-xs-bottom">Method</h2><div class=u-margin-s-bottom id=p0145>In this section, the statistical analyses performed on the data are detailed in time domain. It begins with an overview of time series modeling, followed by description models and identifying metrics for model assessing. The flowchart of model is shown in Fig. 3. In the following subsections, all details will be introduced.</div></section></section><section><section id=s0035><h2 class="section-title u-h4 u-margin-l-top u-margin-xs-bottom">Result and discussion</h2><div class=u-margin-s-bottom id=p0245>An overview of the aggregate time series decomposition of the fatal crashes (Fig. 4) illustrates a general long-term decreasing trend in the average data level. Moreover, it suggests non-stationarity in variance, which seems to escalate alongside the mean of the data, and the existence of seasonality within the dataset. Therefore, to address the non-stationarity in variance in Gaussian SARIMA modeling, the Box-Cox transformation was applied.</div><div class=u-margin-s-bottom id=p0250>The Box-Cox transformation emerged as a crucial</div></section></section><section><section id=s0040><h2 class="section-title u-h4 u-margin-l-top u-margin-xs-bottom">Conclusion</h2><div class=u-margin-s-bottom id=p0375>The escalating prevalence of road traffic injuries, especially in developing nations like Iran, underscores the urgent necessity for effective interventions. Addressing this critical issue mandates the deployment of precise analytical methodologies to dissect and mitigate the multifaceted factors contributing to fatal crashes. This study successfully introduced the Negative Binomial Generalized Seasonal Autoregressive Integrated Moving Average with Exogenous Variables (GSARIMAX) model as a</div></section></section><section><section id=s0050><h2 class="section-title u-h4 u-margin-l-top u-margin-xs-bottom">CRediT authorship contribution statement</h2><div class=u-margin-s-bottom id=p0405><strong>Sara Ghalehnovi:</strong> Writing – original draft, Visualization, Validation, Software, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. <strong>Abolfazl Mohammadzadeh Moghaddam:</strong> Writing – review & editing, Writing – original draft, Supervision, Methodology, Investigation, Funding acquisition, Formal analysis, Conceptualization. <strong>Seyed Iman Mohammadpour:</strong> Writing – review & editing, Validation, Software, Methodology, Formal analysis, Data curation,</div></section></section><section><section id=coi005><h2 class="u-h4 u-margin-l-top u-margin-xs-bottom"id=st075>Declaration of competing interest</h2><div class=u-margin-s-bottom id=p0410>The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</div></section></section><section><section id=ak005><h2 class="u-h4 u-margin-l-top u-margin-xs-bottom"id=st080>Acknowledgment</h2><div class=u-margin-s-bottom id=p0415>The authors would like to express their profound gratitude to Ferdowsi University of Mashhad for providing grant number 3/58712.</div></section></section></div></div><div class="related-content-links u-display-none-from-md"><button class="button-link button-link-primary button-link-small"type=button><span class=button-link-text-container><span class=button-link-text>Recommended articles</span></span></button></div><div class=Tail></div><div id=preview-section-references><div class="paginatedReferences u-font-serif"><div class=PageDivider></div><header><h2 class="u-h4 u-margin-l-ver"><span>References</span><span> (65)</span></h2></header><ul><li class="bib-reference u-margin-s-bottom"><span class=u-font-sans><span class="author u-font-sans"><span>M. </span>Abdel-Aty</span><em> et al.</em></span><h3 class=title>Analysis and prediction of traffic fatalities resulting from angle collisions including the effect of vehicles’ configuration and compatibility</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>Accid. Anal. Prev.</h3></div><div class=series>(2004)</div></span><li class="bib-reference u-margin-s-bottom"><span class=u-font-sans><span class="author u-font-sans"><span>S. </span>Akhtar</span><em> et al.</em></span><h3 class=title>Impact of the penalty points system on severe road traffic injuries in Kuwait</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>Traffic Inj. Prev.</h3></div><div class=series>(2013)</div></span><li class="bib-reference u-margin-s-bottom"><span>Asadi, M., Pourhossein, K., 2019. Wind and Solar Farms Site Selection Using Geographical Information System (GIS),...</span><li class="bib-reference u-margin-s-bottom"><span>Bahadorimonfared, A., Soori, H., Mehrabi, Y., Delpisheh, A., Esmaili, A., Salehi, M., Bakhtiyari, M., 2013. Trends of...</span><li class="bib-reference u-margin-s-bottom"><span class=u-font-sans><span class="author u-font-sans"><span>M.A. </span>Benjamin</span><em> et al.</em></span><h3 class=title>Generalized autoregressive moving average models</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>J. Am. Stat. Assoc.</h3></div><div class=series>(2003)</div></span><li class="bib-reference u-margin-s-bottom"><span class=u-font-sans><span class="author u-font-sans"><span>R. </span>Bergel-Hayat</span><em> et al.</em></span><h3 class=title>Explaining the road accident risk: Weather effects</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>Accid. Anal. Prev.</h3></div><div class=series>(2013)</div></span><li class="bib-reference u-margin-s-bottom"><span class=u-font-sans><span class="author u-font-sans"><span>E. </span>Blais</span><em> et al.</em></span><h3 class=title>Improving the safety effect of speed camera programs through innovations: Evidence from the French experience</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>J. Saf. Res.</h3></div><div class=series>(2015)</div></span><li class="bib-reference u-margin-s-bottom"><span class=u-font-sans><span class="author u-font-sans"><span>C. </span>Bonander</span><em> et al.</em></span><h3 class=title>The effect of the Swedish bicycle helmet law for children: An interrupted time series study</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>J. Saf. Res.</h3></div><div class=series>(2014)</div></span><li class="bib-reference u-margin-s-bottom"><span class=u-font-sans><span class="author u-font-sans"><span>G.E.P. </span>Box</span><em> et al.</em></span><h3 class=title>An Analysis of Transformations. Journal of the Royal Statistical Society Series B</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>Stat. Methodol.</h3></div><div class=series>(1964)</div></span><li class="bib-reference u-margin-s-bottom"><span>Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis: forecasting and control. San Francisco, CA: Holden-Day....</span></ul><div class=u-display-none><li class="bib-reference u-margin-s-bottom"><span class=u-font-sans><span class="author u-font-sans"><span>O.J.T. </span>Briët</span><em> et al.</em></span><h3 class=title>Generalized Seasonal Autoregressive Integrated Moving Average Models for Count Data with Application to Malaria Time Series with Low Case Numbers</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>PLoS One</h3></div><div class=series>(2013)</div></span><li class="bib-reference u-margin-s-bottom"><span class=u-font-sans><span class="author u-font-sans"><span>T. </span>Brijs</span><em> et al.</em></span><h3 class=title>Studying the effect of weather conditions on daily crash counts using a discrete time-series model</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>Accident Analysis and Prevention</h3></div><div class=series>(2008)</div></span><li class="bib-reference u-margin-s-bottom"><span>C., A. O., C.M., E., C. R., O., 2018. On the Modelling of Road Traffic Crashes: A case of SARIMA Models. Journal of...</span><li class="bib-reference u-margin-s-bottom"><span class=u-font-sans><span class="author u-font-sans"><span>F. </span>Chang</span><em> et al.</em></span><h3 class=title>Capturing long-memory properties in road fatality rate series by an autoregressive fractionally integrated moving average model with generalized autoregressive conditional heteroscedasticity: A case study of Florida, the United States, 1975–2018</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>J. Saf. Res.</h3></div><div class=series>(2022)</div></span><li class="bib-reference u-margin-s-bottom"><span class=u-font-sans><span class="author u-font-sans"><span>W. </span>Cheng</span><em> et al.</em></span><h3 class=title>Predicting motorcycle crash injury severity using weather data and alternative Bayesian multivariate crash frequency models</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>Accid. Anal. Prev.</h3></div><div class=series>(2017)</div></span><li class="bib-reference u-margin-s-bottom"><span class=u-font-sans><span class="author u-font-sans"><span>Y. </span>Chen</span><em> et al.</em></span><h3 class=title>Daily Collision Prediction with SARIMAX and Generalized Linear Models on the Basis of Temporal and Weather Variables</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>Transp. Res. Rec.: J. Transp. Res. Board</h3></div><div class=series>(2014)</div></span><li class="bib-reference u-margin-s-bottom"><span class=u-font-sans><span class="author u-font-sans"><span>M.D. </span>Foroutaghe</span><em> et al.</em></span><h3 class=title>Time trends in gender-specific incidence rates of road traffic injuries in Iran</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>PLoS One</h3></div><div class=series>(2019)</div></span><li class="bib-reference u-margin-s-bottom"><span class="author u-font-sans"><span>D. </span>Gamerman</span><h3 class=title>Markov chain Monte Carlo for dynamic generalised linear models</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>Biometrika</h3></div><div class=series>(1998)</div></span><li class="bib-reference u-margin-s-bottom"><span>Geneva: World Health Organization. (2018). Global action plan on physical activity 2018–2030: more active people for a...</span><li class="bib-reference u-margin-s-bottom"><span class="author u-font-sans"><span>K.A. </span>Getahun</span><h3 class=title>Time series modeling of road traffic accidents in Amhara Region</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>Journal of Big Data</h3></div><div class=series>(2021)</div></span><li class="bib-reference u-margin-s-bottom"><span class=u-font-sans><span class="author u-font-sans"><span>A.G. </span>Guimarães</span><em> et al.</em></span><h3 class=title>Impact of regulations to control alcohol consumption by drivers: An assessment of reduction in fatal traffic accident numbers in the Federal District, Brazil</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>Accid. Anal. Prev.</h3></div><div class=series>(2019)</div></span><li class="bib-reference u-margin-s-bottom"><span>Hourcade, Mazurek, Papoli-Yazdi, Taleghani, 1998. Transportation networks...</span><li class="bib-reference u-margin-s-bottom"><span>Houston, D.J., Richardson, L.E., 2002. Traffic safety and the switch to a primary seat belt law: The California...</span><li class="bib-reference u-margin-s-bottom"><span class=u-font-sans><span class="author u-font-sans"><span>M. </span>Ichikawa</span><em> et al.</em></span><h3 class=title>Increased traffic injuries among older unprotected road users following the introduction of an age-based cognitive test to the driver’s license renewal procedure in Japan</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>Accid. Anal. Prev.</h3></div><div class=series>(2020)</div></span><li class="bib-reference u-margin-s-bottom"><span class=u-font-sans><span class="author u-font-sans"><span>J. </span>Ignacio Nazif-Muñoz</span><em> et al.</em></span><h3 class=title>Impact of child restraint policies on child occupant fatalities and injuries in Chile and its regions: An interrupted time-series study</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>Accid. Anal. Prev.</h3></div><div class=series>(2018)</div></span><li class="bib-reference u-margin-s-bottom"><span class=u-font-sans><span class="author u-font-sans"><span>C.C. </span>Ihueze</span><em> et al.</em></span><h3 class=title>Road traffic accidents prediction modelling: An analysis of Anambra State</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>Nigeria. Accident Analysis and Prevention</h3></div><div class=series>(2018)</div></span><li class="bib-reference u-margin-s-bottom"><span>Jacobs, G. D., Aaron-Thomas, A., Astrop, A., 2000. Estimating Global Road...</span><li class="bib-reference u-margin-s-bottom"><span class=u-font-sans><span class="author u-font-sans"><span>M. </span>Jamali-Dolatabad</span><em> et al.</em></span><h3 class=title>Applying count time series to assess 13-year pedestrian mortality trend caused by traffic accidents in East-Azerbaijan province</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>Iran. International Journal of Injury Control and Safety Promotion</h3></div><div class=series>(2022)</div></span><li class="bib-reference u-margin-s-bottom"><span class=u-font-sans><span class="author u-font-sans"><span>S. </span>Kaboli</span><em> et al.</em></span><h3 class=title>Variation in physical characteristics of rainfall in Iran, determined using daily rainfall concentration index and monthly rainfall percentage index</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>Theor. Appl. Climatol.</h3></div><div class=series>(2021)</div></span><li class="bib-reference u-margin-s-bottom"><span class=u-font-sans><span class="author u-font-sans"><span>S. </span>Kisely</span><em> et al.</em></span><h3 class=title>A time series analysis of alcohol-related presentations to emergency departments in Queensland following the increase in alcopops tax</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>J. Epidemiol. Community Health</h3></div><div class=series>(2015)</div></span><li class="bib-reference u-margin-s-bottom"><span class="author u-font-sans"><span>M.C. </span>Jones</span><h3 class=title>Randomly choosing parameters from the stationary and invertibility region of autoregressive-moving average models</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>Appl. Stat.</h3></div><div class=series>(1987)</div></span><li class="bib-reference u-margin-s-bottom"><span class=u-font-sans><span class="author u-font-sans"><span>C. </span>Melchior</span><em> et al.</em></span><h3 class=title>Forecasting Brazilian mortality rates due to occupational accidents using autoregressive moving average approaches</h3><span class="host u-clr-grey6 u-font-sans"><div class=series><h3 class=title>Int. J. Forecast.</h3></div><div class=series>(2021)</div></span></div><button class="button-alternative button-alternative-secondary u-font-sans u-margin-l-bottom large-alternative button-alternative-icon-left"id=show-more-refs-btn type=button><svg class="icon icon-navigate-down"viewbox="0 0 92 128"focusable=false height=20><path d="M1 51l7-7 38 38 38-38 7 7-45 45z"></path></svg><span class=button-alternative-text-container><span class=button-alternative-text>View more references</span></span></button></div></div><div id=preview-section-cited-by><section aria-label="Cited by"class="ListArticles preview"><div class=PageDivider></div><header id=citing-articles-header><h2 class="u-h4 u-margin-l-ver u-font-serif">Cited by (0)</h2></header><div aria-describedby=citing-articles-header></div></section></div><div class=PageDivider></div><a class="anchor full-text-link anchor-primary"aria-disabled=true href=/science/article/pii/S0001457525000442 tabindex=-1><span class=anchor-text-container><span class=anchor-text>View full text</span></span></a><div class=Copyright><span class=copyright-line>© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.</span></div></article><div class="u-display-block-from-md col-lg-6 col-md-8 pad-right u-padding-s-top"><aside aria-label="Related content"class="RelatedContent u-clr-grey8"><section class="RelatedContentPanel u-margin-s-bottom"><header class="related-content-panel-header u-margin-s-bottom"id=recommended-articles-header><button class="button-link button-link-secondary related-content-panel-toggle is-up button-link-icon-right button-link-has-colored-icon"aria-expanded=true data-aa-button=sd:product:journal:article:location=recommended-articles:type=close type=button><span class=button-link-text-container><span class=button-link-text><h2 class="section-title u-h4"><span class=related-content-panel-title-text>Recommended articles</span></h2></span></span><svg class="icon icon-navigate-down"viewbox="0 0 92 128"focusable=false height=20><path d="M1 51l7-7 38 38 38-38 7 7-45 45z"></path></svg></button></header><div aria-describedby=recommended-articles-header aria-hidden=false><div class=text-xs id=recommended-articles><ul><li class="RelatedContentPanelItem u-display-block"><div class="sub-heading u-padding-xs-bottom"><h3 class="related-content-panel-list-entry-outline-padding text-s u-font-serif"id=recommended-articles-article0-title><a class="anchor u-clamp-2-lines anchor-primary"title="Evaluating the impact of socio-economic contributing factors of cities in California on their traffic safety condition"href=/science/article/pii/S2214140521000049><span class=anchor-text-container><span class=anchor-text><span>Evaluating the impact of socio-economic contributing factors of cities in California on their traffic safety condition</span></span></span></a></h3><div class="article-source u-clr-grey6"><div class=source>Journal of Transport & Health, Volume 20, 2021, Article 101010</div></div><div class=authors><span>Amir M.</span><span>Amiri</span>, …, <span>Navid</span><span>Nadimi</span></div></div><div class=buttons></div><li class="RelatedContentPanelItem u-display-block"><div class="sub-heading u-padding-xs-bottom"><h3 class="related-content-panel-list-entry-outline-padding text-s u-font-serif"id=recommended-articles-article1-title><a class="anchor u-clamp-2-lines anchor-primary"title="Classification of driving simulators validation: A case study using an immersive driving simulator"href=/science/article/pii/S0001457525000302><span class=anchor-text-container><span class=anchor-text><span>Classification of driving simulators validation: A case study using an immersive driving simulator</span></span></span></a></h3><div class="article-source u-clr-grey6"><div class=source>Accident Analysis & Prevention, Volume 213, 2025, Article 107944</div></div><div class=authors><span>César</span><span>Andriola</span>, …, <span>Christine Tessele</span><span>Nodari</span></div></div><div class=buttons></div><li class="RelatedContentPanelItem u-display-block"><div class="sub-heading u-padding-xs-bottom"><h3 class="related-content-panel-list-entry-outline-padding text-s u-font-serif"id=recommended-articles-article2-title><a class="anchor u-clamp-2-lines anchor-primary"title="Shedding Light: How One Family's Tragedy Became Another's Beacon"href=/science/article/pii/S0736467924003378><span class=anchor-text-container><span class=anchor-text><span>Shedding Light: How One Family's Tragedy Became Another's Beacon</span></span></span></a></h3><div class="article-source u-clr-grey6"><div class=source>The Journal of Emergency Medicine, 2024</div></div><div class=authors><span>Alexandra</span><span>Reens</span></div></div><div class=buttons></div><li class="RelatedContentPanelItem u-display-none"><div class="sub-heading u-padding-xs-bottom"><h3 class="related-content-panel-list-entry-outline-padding text-s u-font-serif"id=recommended-articles-article3-title><a class="anchor u-clamp-2-lines anchor-primary"title="Spatial heterogeneity effect of built environment on traffic safety using geographically weighted atrous convolutions neural network"href=/science/article/pii/S000145752500020X><span class=anchor-text-container><span class=anchor-text><span>Spatial heterogeneity effect of built environment on traffic safety using geographically weighted atrous convolutions neural network</span></span></span></a></h3><div class="article-source u-clr-grey6"><div class=source>Accident Analysis & Prevention, Volume 213, 2025, Article 107934</div></div><div class=authors><span>Tian</span><span>Li</span>, …, <span>Changxing</span><span>Li</span></div></div><div class=buttons></div><li class="RelatedContentPanelItem u-display-none"><div class="sub-heading u-padding-xs-bottom"><h3 class="related-content-panel-list-entry-outline-padding text-s u-font-serif"id=recommended-articles-article4-title><a class="anchor u-clamp-2-lines anchor-primary"title="Probabilistic modelling of optimal placement strategies of hazardous materials railcars in freight trains"href=/science/article/pii/S0001457525000430><span class=anchor-text-container><span class=anchor-text><span>Probabilistic modelling of optimal placement strategies of hazardous materials railcars in freight trains</span></span></span></a></h3><div class="article-source u-clr-grey6"><div class=source>Accident Analysis & Prevention, Volume 213, 2025, Article 107957</div></div><div class=authors><span>Chen-Yu</span><span>Lin</span>, …, <span>Christopher P.L.</span><span>Barkan</span></div></div><div class=buttons></div><li class="RelatedContentPanelItem u-display-none"><div class="sub-heading u-padding-xs-bottom"><h3 class="related-content-panel-list-entry-outline-padding text-s u-font-serif"id=recommended-articles-article5-title><a class="anchor u-clamp-2-lines anchor-primary"title="Validation of human benchmark models for automated driving system approval: How competent and careful are they really?"href=/science/article/pii/S0001457525000089><span class=anchor-text-container><span class=anchor-text><span>Validation of human benchmark models for automated driving system approval: How competent and careful are they really?</span></span></span></a></h3><div class="article-source u-clr-grey6"><div class=source>Accident Analysis & Prevention, Volume 213, 2025, Article 107922</div></div><div class=authors><span>Pierluigi</span><span>Olleja</span>, …, <span>Jonas</span><span>Bärgman</span></div></div><div class=buttons></div></ul></div><button class="button-link more-recommendations-button u-margin-s-bottom button-link-primary button-link-icon-right"type=button><span class=button-link-text-container><span class=button-link-text>Show 3 more articles</span></span><svg class="icon icon-navigate-down"viewbox="0 0 92 128"focusable=false height=20><path d="M1 51l7-7 38 38 38-38 7 7-45 45z"></path></svg></button></div></section></aside></div></div></div></div><footer class="els-footer u-bg-white text-xs u-padding-s-hor u-padding-m-hor-from-sm u-padding-l-hor-from-md u-padding-l-ver u-margin-l-top u-margin-xl-top-from-sm u-margin-l-top-from-md"role=contentinfo><div class="els-footer-elsevier u-margin-m-bottom u-margin-0-bottom-from-md u-margin-s-right u-margin-m-right-from-md u-margin-l-right-from-lg"><a aria-label="Elsevier home page (opens in a new tab)"class="anchor anchor-primary anchor-icon-left anchor-with-icon"href=https://www.elsevier.com/ target=_blank><img alt="Elsevier logo with wordmark"class=footer-logo height=64 loading=lazy src=https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/47/images/elsevier-non-solus-new-with-wordmark.svg width=58></a></div><div class=els-footer-content><div class=u-remove-if-print><ul class="els-footer-links u-margin-xs-bottom"style=list-style:none><li><a class="anchor u-display-flex u-clr-grey8 u-margin-s-bottom u-margin-0-bottom-from-sm u-margin-m-right-from-sm u-margin-l-right-from-md anchor-primary anchor-small"href=https://www.elsevier.com/solutions/sciencedirect id=els-footer-about-science-direct rel=nofollow target=_blank><span class=anchor-text-container><span class=anchor-text>About ScienceDirect</span><svg aria-label="Opens in new window"class="icon icon-arrow-up-right-tiny arrow-external-link"viewbox="0 0 8 8"focusable=false height=20><path d="M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z"></path></svg></span></a><li><a class="anchor u-display-flex u-clr-grey8 u-margin-s-bottom u-margin-0-bottom-from-sm u-margin-m-right-from-sm u-margin-l-right-from-md anchor-primary anchor-small"href=/user/institution/login?targetURL=%2Fscience%2Farticle%2Fpii%2FS0001457525000442 id=els-footer-remote-access rel=nofollow><span class=anchor-text-container><span class=anchor-text>Remote access</span></span></a><li><a class="anchor u-display-flex u-clr-grey8 u-margin-s-bottom u-margin-0-bottom-from-sm u-margin-m-right-from-sm u-margin-l-right-from-md anchor-primary anchor-small"href=https://www.elsmediakits.com id=els-footer-advertise rel=nofollow target=_blank><span class=anchor-text-container><span class=anchor-text>Advertise</span><svg aria-label="Opens in new window"class="icon icon-arrow-up-right-tiny arrow-external-link"viewbox="0 0 8 8"focusable=false height=20><path d="M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z"></path></svg></span></a><li><a class="anchor u-display-flex u-clr-grey8 u-margin-s-bottom u-margin-0-bottom-from-sm u-margin-m-right-from-sm u-margin-l-right-from-md anchor-primary anchor-small"href=https://service.elsevier.com/app/contact/supporthub/sciencedirect/ id=els-footer-contact-support rel=nofollow target=_blank><span class=anchor-text-container><span class=anchor-text>Contact and support</span><svg aria-label="Opens in new window"class="icon icon-arrow-up-right-tiny arrow-external-link"viewbox="0 0 8 8"focusable=false height=20><path d="M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z"></path></svg></span></a><li><a class="anchor u-display-flex u-clr-grey8 u-margin-s-bottom u-margin-0-bottom-from-sm u-margin-m-right-from-sm u-margin-l-right-from-md anchor-primary anchor-small"href=https://www.elsevier.com/legal/elsevier-website-terms-and-conditions id=els-footer-terms-condition rel=nofollow target=_blank><span class=anchor-text-container><span class=anchor-text>Terms and conditions</span><svg aria-label="Opens in new window"class="icon icon-arrow-up-right-tiny arrow-external-link"viewbox="0 0 8 8"focusable=false height=20><path d="M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z"></path></svg></span></a><li><a class="anchor u-display-flex u-clr-grey8 u-margin-s-bottom u-margin-0-bottom-from-sm u-margin-m-right-from-sm u-margin-l-right-from-md anchor-primary anchor-small"href=https://www.elsevier.com/legal/privacy-policy id=els-footer-privacy-policy rel=nofollow target=_blank><span class=anchor-text-container><span class=anchor-text>Privacy policy</span><svg aria-label="Opens in new window"class="icon icon-arrow-up-right-tiny arrow-external-link"viewbox="0 0 8 8"focusable=false height=20><path d="M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z"></path></svg></span></a></ul></div><p class=u-remove-if-print id=els-footer-cookie-message>Cookies are used by this site. <button class="button-link ot-sdk-show-settings cookie-btn button-link-primary button-link-small"id=ot-sdk-btn type=button><span class=button-link-text-container><span class=button-link-text><strong>Cookie Settings</strong></span></span></button><p id=els-footer-copyright>All content on this site: Copyright © 2025 or its licensors and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.</div><div class="els-footer-relx u-margin-0-top u-margin-m-top-from-xs u-margin-0-top-from-md"><a aria-label="RELX home page (opens in a new tab)"class="anchor anchor-primary anchor-icon-left anchor-with-icon"href=https://www.relx.com/ id=els-footer-relx target=_blank><img alt="RELX group home page"height=20 loading=lazy src=https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/60/images/logo-relx-tm.svg width=93></a></div></footer></div></div></div></div><div class=floating-ui-node data-sd-ui-floating-ui=true id=floating-ui-node></div><iframe style="display: none"src=//acw.clinicalkey.com/SSOCore/update?acw=5da0966683f0c1466d0ac1a3e2821d92a6fagxrqa%7C%24%7CEA50DC3BB3E0A40B56CD895FBAEBC28671944BAEE4F69C7FA22897B588BBE5C243D069D979FDF2864570D72569F6F4246963A965FFB22CEF3FBA44D1BD4E4F2EB0469A67597464825D387A21AFA2E514&utt=e382-a70838e65914e968a6-48eb30c08fb3a199-YRF tabindex=-1></iframe><iframe style="display: none"src=//acw.scopus.com/SSOCore/update?acw=5da0966683f0c1466d0ac1a3e2821d92a6fagxrqa%7C%24%7CEA50DC3BB3E0A40B56CD895FBAEBC28671944BAEE4F69C7FA22897B588BBE5C243D069D979FDF2864570D72569F6F4246963A965FFB22CEF3FBA44D1BD4E4F2EB0469A67597464825D387A21AFA2E514&utt=e382-a70838e65914e968a6-48eb30c08fb3a199-YRF tabindex=-1></iframe><iframe style="display: none"src=//acw.sciencedirect.com/SSOCore/update?acw=5da0966683f0c1466d0ac1a3e2821d92a6fagxrqa%7C%24%7CEA50DC3BB3E0A40B56CD895FBAEBC28671944BAEE4F69C7FA22897B588BBE5C243D069D979FDF2864570D72569F6F4246963A965FFB22CEF3FBA44D1BD4E4F2EB0469A67597464825D387A21AFA2E514&utt=e382-a70838e65914e968a6-48eb30c08fb3a199-YRF tabindex=-1></iframe><iframe style="display: none"src=//acw.elsevier.com/SSOCore/update?acw=5da0966683f0c1466d0ac1a3e2821d92a6fagxrqa%7C%24%7CEA50DC3BB3E0A40B56CD895FBAEBC28671944BAEE4F69C7FA22897B588BBE5C243D069D979FDF2864570D72569F6F4246963A965FFB22CEF3FBA44D1BD4E4F2EB0469A67597464825D387A21AFA2E514&utt=e382-a70838e65914e968a6-48eb30c08fb3a199-YRF tabindex=-1></iframe><script async src=https://assets.adobedtm.com/4a848ae9611a/032db4f73473/launch-a6263b31083f.min.js type=image/ot-performance></script><span id=pendo-answer-rating></span><script type=text/x-mathjax-config>
MathJax.Hub.Config({
displayAlign: 'left',
"fast-preview": {
disabled: true
},
CommonHTML: { linebreaks: { automatic: true } },
PreviewHTML: { linebreaks: { automatic: true } },
'HTML-CSS': { linebreaks: { automatic: true } },
SVG: {
scale: 90,
linebreaks: { automatic: true }
}
});
</script><script data-cfasync=false>(function initOneTrust() {
const monitor = {
init: () => {},
loaded: () => {},
};
function enableGroup(group) {
document.querySelectorAll(`script[type*="ot-${group}"]`).forEach(script => {
script.type = 'text/javascript';
document.head.appendChild(script);
});
}
function runOneTrustCookies(doClear, monitor) {
const oneTrustConsentSdkId = 'onetrust-consent-sdk';
const emptyNodeSelectors = 'h3.ot-host-name, h4.ot-host-desc, button.ot-host-box';
const ariaLabelledByButtonNodes = 'div.ot-accordion-layout > button';
const ariaAttribute = 'aria-labelledby';
function adjustOneTrustDOM() {
const oneTrustRoot = document.getElementById('onetrust-consent-sdk');
/* remove empty nodes */
[...(oneTrustRoot?.querySelectorAll(emptyNodeSelectors) ?? [])].filter(e => e.textContent === '').forEach(e => e.remove());
/* remove invalid aria-labelledby values */
oneTrustRoot?.querySelectorAll(ariaLabelledByButtonNodes).forEach(e => {
const presentIdValue = e.getAttribute(ariaAttribute)?.split(' ').filter(label => document.getElementById(label)).join(' ');
if (presentIdValue) {
e.setAttribute(ariaAttribute, presentIdValue);
}
});
}
function observeOneTrustLoaded(shouldSetOTDefaults, isConsentPresent) {
const cb = (mutationList, observer) => {
const oneTrustRoot = mutationList.filter(mutationRecord => mutationRecord.type === 'childList' && mutationRecord.addedNodes.length).map(mutationRecord => [...mutationRecord.addedNodes]).flat().find(e => e.id === oneTrustConsentSdkId);
if (oneTrustRoot && typeof OneTrust !== 'undefined') {
monitor.loaded(true);
OneTrust.OnConsentChanged(() => {
const perfAllowed = decodeURIComponent(document.cookie.match('(^| )OptanonConsent=([^;]+)')?.[2])?.match('groups=([0-9:0|1,?]+)&?')?.[1]?.match('2:([0|1])')[1] === '1';
if (perfAllowed) {
enableGroup('performance');
}
});
if (!isConsentPresent && (shouldSetOTDefaults || OneTrust.GetDomainData().ConsentModel.Name === 'implied consent')) {
OneTrust.AllowAll();
}
document.dispatchEvent(new CustomEvent('@sdtech/onetrust/loaded', {}));
observer.disconnect();
adjustOneTrustDOM();
}
};
const observer = new MutationObserver(cb);
observer.observe(document.querySelector('body'), {
childList: true
});
}
if (doClear) {
document.cookie = 'OptanonAlertBoxClosed=; expires=Thu, 01 Jan 1970 00:00:00 UTC; samesite=lax; path=/';
}
const isConsentPresent = !!decodeURIComponent(document.cookie.match('(^| )OptanonConsent=([^;]+)')?.[2])?.match('groups=([0-9:0|1,?]+)&?')?.[1];
const shouldSetOTDefaults = 'true' === 'false' && !document.cookie?.match('OptanonAlertBoxClosed=');
if (shouldSetOTDefaults) {
const date = new Date();
date.setFullYear(date.getFullYear() + 1);
document.cookie = `OptanonAlertBoxClosed=${new Date().toISOString()}; expires=${date.toUTCString()}; samesite=lax; path=/; domain=sciencedirect.com`;
}
observeOneTrustLoaded(shouldSetOTDefaults, isConsentPresent, monitor);
window.addOTScript = () => {
const otSDK = document.createElement('script');
otSDK.setAttribute('data-cfasync', 'false');
otSDK.setAttribute('src', 'https://cdn.cookielaw.org/scripttemplates/otSDKStub.js');
otSDK.setAttribute('data-document-language', 'true');
otSDK.setAttribute('data-domain-script', '865ea198-88cc-4e41-8952-1df75d554d02');
window.addOTScript = () => {};
document.head.appendChild(otSDK);
monitor.init();
};
window.addEventListener('load', () => window.addOTScript());
}
if (document.location.host.match(/.sciencedirect.com$/)) {
runOneTrustCookies(true, monitor);
}
else {
window.addEventListener('load', (event) => {
enableGroup('performance');
});
}
}());</script><script>(function(){function c(){var b=a.contentDocument||a.contentWindow.document;if(b){var d=b.createElement('script');d.innerHTML="window.__CF$cv$params={r:'91c6cdfb2bd70503',t:'MTc0MTMxNjAzMC4wMDAwMDA='};var a=document.createElement('script');a.nonce='';a.src='/cdn-cgi/challenge-platform/scripts/jsd/main.js';document.getElementsByTagName('head')[0].appendChild(a);";b.getElementsByTagName('head')[0].appendChild(d)}}if(document.body){var a=document.createElement('iframe');a.height=1;a.width=1;a.style.position='absolute';a.style.top=0;a.style.left=0;a.style.border='none';a.style.visibility='hidden';document.body.appendChild(a);if('loading'!==document.readyState)c();else if(window.addEventListener)document.addEventListener('DOMContentLoaded',c);else{var e=document.onreadystatechange||function(){};document.onreadystatechange=function(b){e(b);'loading'!==document.readyState&&(document.onreadystatechange=e,c())}}}})();</script><iframe style="position: absolute; top: 0px; left: 0px; border: medium; visibility: hidden;"height=1 width=1></iframe></body>