File size: 10,594 Bytes
c39bf9e
de606a1
 
 
 
 
 
 
c39bf9e
b51fb63
 
 
 
 
 
 
 
 
 
8fcc604
 
 
6359b48
 
 
 
 
caa816e
 
 
 
 
 
 
 
 
 
eea8075
 
 
38688ee
 
 
 
 
4e8902a
c39bf9e
 
 
 
 
 
 
 
 
488365c
 
 
8f47c49
 
 
 
 
1eb7de5
 
 
 
 
 
 
 
 
 
cf4cb91
 
 
24fd79c
 
 
 
 
4e8902a
 
 
 
 
 
 
 
 
 
f8ec971
 
 
5d2fdc9
 
 
 
 
6723504
 
 
 
 
 
 
 
 
 
b779ea1
 
 
13ddb91
 
 
 
 
9659862
 
 
 
 
 
 
 
 
 
afe9d4e
 
 
883c187
 
 
 
 
0add847
 
 
 
 
 
 
 
 
 
188e225
 
 
d2fb376
 
 
 
 
6064dfb
 
 
 
 
 
 
 
 
 
1a38a4f
 
 
d707140
 
 
 
 
de606a1
 
 
 
 
 
 
 
 
 
8d04219
 
 
54ced44
 
 
 
 
89c1c7c
 
 
 
 
 
 
 
 
 
05c7add
 
 
ca79fef
 
 
 
 
c39bf9e
b51fb63
 
 
 
8fcc604
 
6359b48
 
caa816e
 
 
 
eea8075
 
38688ee
 
c39bf9e
 
 
 
488365c
 
8f47c49
 
1eb7de5
 
 
 
cf4cb91
 
24fd79c
 
4e8902a
 
 
 
f8ec971
 
5d2fdc9
 
6723504
 
 
 
b779ea1
 
13ddb91
 
9659862
 
 
 
afe9d4e
 
883c187
 
0add847
 
 
 
188e225
 
d2fb376
 
6064dfb
 
 
 
1a38a4f
 
d707140
 
de606a1
 
 
 
8d04219
 
54ced44
 
89c1c7c
 
 
 
05c7add
 
ca79fef
 
fbb8afd
 
de606a1
65bddda
 
 
0baebf1
65bddda
 
40732c7
65bddda
3c7db3b
65bddda
40732c7
65bddda
 
 
 
 
 
 
 
 
40732c7
65bddda
 
 
 
 
 
 
 
40732c7
65bddda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f917eda
 
22be4ac
f917eda
22be4ac
f917eda
22be4ac
f917eda
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
---
language:
- en
- es
license: mit
task_categories:
- token-classification
- image-to-text
dataset_info:
- config_name: en-digital-line-degradation-seq
  features:
  - name: image
    dtype: image
  - name: ground_truth
    dtype: string
  splits:
  - name: train
    num_bytes: 1528452363.5
    num_examples: 7324
  - name: test
    num_bytes: 660277381.375
    num_examples: 4349
  - name: validation
    num_bytes: 380001163.125
    num_examples: 1831
  download_size: 2439152560
  dataset_size: 2568730908.0
- config_name: en-digital-paragraph-degradation-seq
  features:
  - name: image
    dtype: image
  - name: ground_truth
    dtype: string
  splits:
  - name: train
    num_bytes: 2229537140.5
    num_examples: 7324
  - name: test
    num_bytes: 1082553772.375
    num_examples: 4349
  - name: validation
    num_bytes: 562015994.125
    num_examples: 1831
  download_size: 3780901541
  dataset_size: 3874106907.0
- config_name: en-digital-seq
  features:
  - name: image
    dtype: image
  - name: ground_truth
    dtype: string
  splits:
  - name: train
    num_bytes: 3422825072.42
    num_examples: 7324
  - name: test
    num_bytes: 1800300619.069
    num_examples: 4349
  - name: validation
    num_bytes: 867013113.894
    num_examples: 1831
  download_size: 6044707011
  dataset_size: 6090138805.383
- config_name: en-digital-token-class
  features:
  - name: image
    dtype: image
  - name: ground_truth
    dtype: string
  splits:
  - name: train
    num_bytes: 3589429586.092
    num_examples: 7324
  - name: test
    num_bytes: 1865825239.069
    num_examples: 4349
  - name: validation
    num_bytes: 900934318.573
    num_examples: 1831
  download_size: 6105490832
  dataset_size: 6356189143.734
- config_name: en-render-seq
  features:
  - name: image
    dtype: image
  - name: ground_truth
    dtype: string
  splits:
  - name: train
    num_bytes: 19131026017.588
    num_examples: 7324
  - name: test
    num_bytes: 11101342722.574
    num_examples: 4349
  - name: validation
    num_bytes: 4749558423.85
    num_examples: 1831
  download_size: 34947880371
  dataset_size: 34981927164.012
- config_name: en-render-token-class
  features:
  - name: image
    dtype: image
  - name: ground_truth
    dtype: string
  splits:
  - name: train
    num_bytes: 19310797485.304
    num_examples: 7324
  - name: test
    num_bytes: 11186335750.574
    num_examples: 4349
  - name: validation
    num_bytes: 4823864845.204
    num_examples: 1831
  download_size: 35049028878
  dataset_size: 35320998081.082
- config_name: es-digital-line-degradation-seq
  features:
  - name: image
    dtype: image
  - name: ground_truth
    dtype: string
  splits:
  - name: train
    num_bytes: 1420327224.625
    num_examples: 8115
  - name: test
    num_bytes: 840561310.75
    num_examples: 4426
  - name: validation
    num_bytes: 354456927.5
    num_examples: 2028
  download_size: 2484806404
  dataset_size: 2615345462.875
- config_name: es-digital-seq
  features:
  - name: image
    dtype: image
  - name: ground_truth
    dtype: string
  splits:
  - name: train
    num_bytes: 3515604711.065
    num_examples: 8115
  - name: test
    num_bytes: 2068684395.052
    num_examples: 4426
  - name: validation
    num_bytes: 880373678.928
    num_examples: 2028
  download_size: 6392517545
  dataset_size: 6464662785.045
- config_name: es-digital-token-class
  features:
  - name: image
    dtype: image
  - name: ground_truth
    dtype: string
  splits:
  - name: train
    num_bytes: 3660686914.385
    num_examples: 8115
  - name: test
    num_bytes: 2144109186.052
    num_examples: 4426
  - name: validation
    num_bytes: 911001647.288
    num_examples: 2028
  download_size: 6450619089
  dataset_size: 6715797747.725
- config_name: es-render-seq
  features:
  - name: image
    dtype: image
  - name: ground_truth
    dtype: string
  splits:
  - name: train
    num_bytes: 20956369016.935
    num_examples: 8115
  - name: test
    num_bytes: 11530001568.862
    num_examples: 4426
  - name: validation
    num_bytes: 5264019060.636
    num_examples: 2028
  download_size: 37775576850
  dataset_size: 37750389646.433
- config_name: es-render-token-class
  features:
  - name: image
    dtype: image
  - name: ground_truth
    dtype: string
  splits:
  - name: train
    num_bytes: 21158864973.565
    num_examples: 8115
  - name: test
    num_bytes: 11627401262.862
    num_examples: 4426
  - name: validation
    num_bytes: 5282897644.0
    num_examples: 2028
  download_size: 37873172957
  dataset_size: 38069163880.427
configs:
- config_name: en-digital-line-degradation-seq
  data_files:
  - split: train
    path: en-digital-line-degradation-seq/train-*
  - split: test
    path: en-digital-line-degradation-seq/test-*
  - split: validation
    path: en-digital-line-degradation-seq/validation-*
- config_name: en-digital-paragraph-degradation-seq
  data_files:
  - split: train
    path: en-digital-paragraph-degradation-seq/train-*
  - split: test
    path: en-digital-paragraph-degradation-seq/test-*
  - split: validation
    path: en-digital-paragraph-degradation-seq/validation-*
- config_name: en-digital-seq
  data_files:
  - split: train
    path: en-digital-seq/train-*
  - split: test
    path: en-digital-seq/test-*
  - split: validation
    path: en-digital-seq/validation-*
- config_name: en-digital-token-class
  data_files:
  - split: train
    path: en-digital-token-class/train-*
  - split: test
    path: en-digital-token-class/test-*
  - split: validation
    path: en-digital-token-class/validation-*
- config_name: en-render-seq
  data_files:
  - split: train
    path: en-render-seq/train-*
  - split: test
    path: en-render-seq/test-*
  - split: validation
    path: en-render-seq/validation-*
- config_name: en-render-token-class
  data_files:
  - split: train
    path: en-render-token-class/train-*
  - split: test
    path: en-render-token-class/test-*
  - split: validation
    path: en-render-token-class/validation-*
- config_name: es-digital-line-degradation-seq
  data_files:
  - split: train
    path: es-digital-line-degradation-seq/train-*
  - split: test
    path: es-digital-line-degradation-seq/test-*
  - split: validation
    path: es-digital-line-degradation-seq/validation-*
- config_name: es-digital-seq
  data_files:
  - split: train
    path: es-digital-seq/train-*
  - split: test
    path: es-digital-seq/test-*
  - split: validation
    path: es-digital-seq/validation-*
- config_name: es-digital-token-class
  data_files:
  - split: train
    path: es-digital-token-class/train-*
  - split: test
    path: es-digital-token-class/test-*
  - split: validation
    path: es-digital-token-class/validation-*
- config_name: es-render-seq
  data_files:
  - split: train
    path: es-render-seq/train-*
  - split: test
    path: es-render-seq/test-*
  - split: validation
    path: es-render-seq/validation-*
- config_name: es-render-token-class
  data_files:
  - split: train
    path: es-render-token-class/train-*
  - split: test
    path: es-render-token-class/test-*
  - split: validation
    path: es-render-token-class/validation-*
tags:
- synthetic
---


<p align="center" style="margin-top: 50px; margin-bottom: 50px;">
  <img src="figs/merit-dataset.png" alt="Visual Abstract" width="500" />
</p>

# The MERIT Dataset πŸŽ’πŸ“ƒπŸ†

The MERIT Dataset is a multimodal dataset (image + text + layout) designed for training and benchmarking Large Language Models (LLMs) on Visually Rich Document Understanding (VrDU) tasks. It is a fully labeled synthetic dataset generated using our opensource pipeline available on [GitHub](https://github.com/nachoDRT/MERIT-Dataset). You can explore more details about the dataset and pipeline reading our [paper](https://arxiv.org/abs/2409.00447).

## Introduction ℹ️
AI faces some dynamic and technical issues that push end-users to create and gather their own data. In addition, multimodal LLMs are gaining more and more attention, but datasets to train them might be improved to be more complex, more flexible, and easier to gather/generate.

In this research project, we identify school transcripts of records as a suitable niche to generate a synthetic challenging multimodal dataset (image + text + layout) for Token Classification or Sequence Generation.

<p align="center" style="margin-top: 50px; margin-bottom: 50px;">
  <img src="figs/demo-samples.gif" alt="demo" width="200" />
</p>


## Hardware βš™οΈ
We ran the dataset generator on an MSI Meg Infinite X 10SF-666EU with an Intel Core i9-10900KF and an Nvidia RTX 2080 GPU, running on Ubuntu 20.04. Energy values in the table refer to 1k samples, and time values refer to one sample.

| Task                         | Energy (kWh) | Time (s) |
|------------------------------|--------------|----------|
| Generate digital samples     | 0.016        | 2        |
| Modify samples in Blender    | 0.366        | 34       |


## Benchmark πŸ’ͺ

We train the LayoutLM family models on Token Classification to demonstrate the suitability of our dataset. The MERIT Dataset poses a challenging scenario with more than 400 labels.

We benchmark on three scenarios with an increasing presence of Blender-modified samples.

+ Scenario 1: We train and test on digital samples.
+ Scenario 2: We train with digital samples and test with Blender-modified samples.
+ Scenario 3: We train and test with Blender-modified samples.



|                  | **Scenario 1** | **Scenario 2** | **Scenario 3** | **FUNSD/** | **Lang.** | **(Tr./Val./Test)** |
|------------------|----------------|----------------|----------------|------------|-----------|----------------------|
|                  | Dig./Dig.      | Dig./Mod.      | Mod./Mod       | XFUND      |           |                      |
|                  | F1         | F1         | F1         | F1     |           |                      |
| **LayoutLMv2**       | 0.5536         | 0.3764         | 0.4984         | 0.8276     | Eng.      | 7324 / 1831 / 4349       |
| **LayoutLMv3**       | 0.3452         | 0.2681         | 0.6370         | 0.9029     | Eng.      | 7324 / 1831 / 4349       |
| **LayoutXLM**        | 0.5977         | 0.3295         | 0.4489         | 0.7550     | Spa.      | 8115 / 2028 / 4426       |

## Citation

If you find our research interesting, please cite our work. πŸ“„βœοΈ

```bibtex
@article{de2024merit,
  title={The MERIT Dataset: Modelling and Efficiently Rendering Interpretable Transcripts},
  author={de Rodrigo, I and Sanchez-Cuadrado, A and Boal, J and Lopez-Lopez, AJ},
  journal={arXiv preprint arXiv:2409.00447},
  year={2024}
}