File size: 10,594 Bytes
c39bf9e de606a1 c39bf9e b51fb63 8fcc604 6359b48 caa816e eea8075 38688ee 4e8902a c39bf9e 488365c 8f47c49 1eb7de5 cf4cb91 24fd79c 4e8902a f8ec971 5d2fdc9 6723504 b779ea1 13ddb91 9659862 afe9d4e 883c187 0add847 188e225 d2fb376 6064dfb 1a38a4f d707140 de606a1 8d04219 54ced44 89c1c7c 05c7add ca79fef c39bf9e b51fb63 8fcc604 6359b48 caa816e eea8075 38688ee c39bf9e 488365c 8f47c49 1eb7de5 cf4cb91 24fd79c 4e8902a f8ec971 5d2fdc9 6723504 b779ea1 13ddb91 9659862 afe9d4e 883c187 0add847 188e225 d2fb376 6064dfb 1a38a4f d707140 de606a1 8d04219 54ced44 89c1c7c 05c7add ca79fef fbb8afd de606a1 65bddda 0baebf1 65bddda 40732c7 65bddda 3c7db3b 65bddda 40732c7 65bddda 40732c7 65bddda 40732c7 65bddda f917eda 22be4ac f917eda 22be4ac f917eda 22be4ac f917eda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
---
language:
- en
- es
license: mit
task_categories:
- token-classification
- image-to-text
dataset_info:
- config_name: en-digital-line-degradation-seq
features:
- name: image
dtype: image
- name: ground_truth
dtype: string
splits:
- name: train
num_bytes: 1528452363.5
num_examples: 7324
- name: test
num_bytes: 660277381.375
num_examples: 4349
- name: validation
num_bytes: 380001163.125
num_examples: 1831
download_size: 2439152560
dataset_size: 2568730908.0
- config_name: en-digital-paragraph-degradation-seq
features:
- name: image
dtype: image
- name: ground_truth
dtype: string
splits:
- name: train
num_bytes: 2229537140.5
num_examples: 7324
- name: test
num_bytes: 1082553772.375
num_examples: 4349
- name: validation
num_bytes: 562015994.125
num_examples: 1831
download_size: 3780901541
dataset_size: 3874106907.0
- config_name: en-digital-seq
features:
- name: image
dtype: image
- name: ground_truth
dtype: string
splits:
- name: train
num_bytes: 3422825072.42
num_examples: 7324
- name: test
num_bytes: 1800300619.069
num_examples: 4349
- name: validation
num_bytes: 867013113.894
num_examples: 1831
download_size: 6044707011
dataset_size: 6090138805.383
- config_name: en-digital-token-class
features:
- name: image
dtype: image
- name: ground_truth
dtype: string
splits:
- name: train
num_bytes: 3589429586.092
num_examples: 7324
- name: test
num_bytes: 1865825239.069
num_examples: 4349
- name: validation
num_bytes: 900934318.573
num_examples: 1831
download_size: 6105490832
dataset_size: 6356189143.734
- config_name: en-render-seq
features:
- name: image
dtype: image
- name: ground_truth
dtype: string
splits:
- name: train
num_bytes: 19131026017.588
num_examples: 7324
- name: test
num_bytes: 11101342722.574
num_examples: 4349
- name: validation
num_bytes: 4749558423.85
num_examples: 1831
download_size: 34947880371
dataset_size: 34981927164.012
- config_name: en-render-token-class
features:
- name: image
dtype: image
- name: ground_truth
dtype: string
splits:
- name: train
num_bytes: 19310797485.304
num_examples: 7324
- name: test
num_bytes: 11186335750.574
num_examples: 4349
- name: validation
num_bytes: 4823864845.204
num_examples: 1831
download_size: 35049028878
dataset_size: 35320998081.082
- config_name: es-digital-line-degradation-seq
features:
- name: image
dtype: image
- name: ground_truth
dtype: string
splits:
- name: train
num_bytes: 1420327224.625
num_examples: 8115
- name: test
num_bytes: 840561310.75
num_examples: 4426
- name: validation
num_bytes: 354456927.5
num_examples: 2028
download_size: 2484806404
dataset_size: 2615345462.875
- config_name: es-digital-seq
features:
- name: image
dtype: image
- name: ground_truth
dtype: string
splits:
- name: train
num_bytes: 3515604711.065
num_examples: 8115
- name: test
num_bytes: 2068684395.052
num_examples: 4426
- name: validation
num_bytes: 880373678.928
num_examples: 2028
download_size: 6392517545
dataset_size: 6464662785.045
- config_name: es-digital-token-class
features:
- name: image
dtype: image
- name: ground_truth
dtype: string
splits:
- name: train
num_bytes: 3660686914.385
num_examples: 8115
- name: test
num_bytes: 2144109186.052
num_examples: 4426
- name: validation
num_bytes: 911001647.288
num_examples: 2028
download_size: 6450619089
dataset_size: 6715797747.725
- config_name: es-render-seq
features:
- name: image
dtype: image
- name: ground_truth
dtype: string
splits:
- name: train
num_bytes: 20956369016.935
num_examples: 8115
- name: test
num_bytes: 11530001568.862
num_examples: 4426
- name: validation
num_bytes: 5264019060.636
num_examples: 2028
download_size: 37775576850
dataset_size: 37750389646.433
- config_name: es-render-token-class
features:
- name: image
dtype: image
- name: ground_truth
dtype: string
splits:
- name: train
num_bytes: 21158864973.565
num_examples: 8115
- name: test
num_bytes: 11627401262.862
num_examples: 4426
- name: validation
num_bytes: 5282897644.0
num_examples: 2028
download_size: 37873172957
dataset_size: 38069163880.427
configs:
- config_name: en-digital-line-degradation-seq
data_files:
- split: train
path: en-digital-line-degradation-seq/train-*
- split: test
path: en-digital-line-degradation-seq/test-*
- split: validation
path: en-digital-line-degradation-seq/validation-*
- config_name: en-digital-paragraph-degradation-seq
data_files:
- split: train
path: en-digital-paragraph-degradation-seq/train-*
- split: test
path: en-digital-paragraph-degradation-seq/test-*
- split: validation
path: en-digital-paragraph-degradation-seq/validation-*
- config_name: en-digital-seq
data_files:
- split: train
path: en-digital-seq/train-*
- split: test
path: en-digital-seq/test-*
- split: validation
path: en-digital-seq/validation-*
- config_name: en-digital-token-class
data_files:
- split: train
path: en-digital-token-class/train-*
- split: test
path: en-digital-token-class/test-*
- split: validation
path: en-digital-token-class/validation-*
- config_name: en-render-seq
data_files:
- split: train
path: en-render-seq/train-*
- split: test
path: en-render-seq/test-*
- split: validation
path: en-render-seq/validation-*
- config_name: en-render-token-class
data_files:
- split: train
path: en-render-token-class/train-*
- split: test
path: en-render-token-class/test-*
- split: validation
path: en-render-token-class/validation-*
- config_name: es-digital-line-degradation-seq
data_files:
- split: train
path: es-digital-line-degradation-seq/train-*
- split: test
path: es-digital-line-degradation-seq/test-*
- split: validation
path: es-digital-line-degradation-seq/validation-*
- config_name: es-digital-seq
data_files:
- split: train
path: es-digital-seq/train-*
- split: test
path: es-digital-seq/test-*
- split: validation
path: es-digital-seq/validation-*
- config_name: es-digital-token-class
data_files:
- split: train
path: es-digital-token-class/train-*
- split: test
path: es-digital-token-class/test-*
- split: validation
path: es-digital-token-class/validation-*
- config_name: es-render-seq
data_files:
- split: train
path: es-render-seq/train-*
- split: test
path: es-render-seq/test-*
- split: validation
path: es-render-seq/validation-*
- config_name: es-render-token-class
data_files:
- split: train
path: es-render-token-class/train-*
- split: test
path: es-render-token-class/test-*
- split: validation
path: es-render-token-class/validation-*
tags:
- synthetic
---
<p align="center" style="margin-top: 50px; margin-bottom: 50px;">
<img src="figs/merit-dataset.png" alt="Visual Abstract" width="500" />
</p>
# The MERIT Dataset πππ
The MERIT Dataset is a multimodal dataset (image + text + layout) designed for training and benchmarking Large Language Models (LLMs) on Visually Rich Document Understanding (VrDU) tasks. It is a fully labeled synthetic dataset generated using our opensource pipeline available on [GitHub](https://github.com/nachoDRT/MERIT-Dataset). You can explore more details about the dataset and pipeline reading our [paper](https://arxiv.org/abs/2409.00447).
## Introduction βΉοΈ
AI faces some dynamic and technical issues that push end-users to create and gather their own data. In addition, multimodal LLMs are gaining more and more attention, but datasets to train them might be improved to be more complex, more flexible, and easier to gather/generate.
In this research project, we identify school transcripts of records as a suitable niche to generate a synthetic challenging multimodal dataset (image + text + layout) for Token Classification or Sequence Generation.
<p align="center" style="margin-top: 50px; margin-bottom: 50px;">
<img src="figs/demo-samples.gif" alt="demo" width="200" />
</p>
## Hardware βοΈ
We ran the dataset generator on an MSI Meg Infinite X 10SF-666EU with an Intel Core i9-10900KF and an Nvidia RTX 2080 GPU, running on Ubuntu 20.04. Energy values in the table refer to 1k samples, and time values refer to one sample.
| Task | Energy (kWh) | Time (s) |
|------------------------------|--------------|----------|
| Generate digital samples | 0.016 | 2 |
| Modify samples in Blender | 0.366 | 34 |
## Benchmark πͺ
We train the LayoutLM family models on Token Classification to demonstrate the suitability of our dataset. The MERIT Dataset poses a challenging scenario with more than 400 labels.
We benchmark on three scenarios with an increasing presence of Blender-modified samples.
+ Scenario 1: We train and test on digital samples.
+ Scenario 2: We train with digital samples and test with Blender-modified samples.
+ Scenario 3: We train and test with Blender-modified samples.
| | **Scenario 1** | **Scenario 2** | **Scenario 3** | **FUNSD/** | **Lang.** | **(Tr./Val./Test)** |
|------------------|----------------|----------------|----------------|------------|-----------|----------------------|
| | Dig./Dig. | Dig./Mod. | Mod./Mod | XFUND | | |
| | F1 | F1 | F1 | F1 | | |
| **LayoutLMv2** | 0.5536 | 0.3764 | 0.4984 | 0.8276 | Eng. | 7324 / 1831 / 4349 |
| **LayoutLMv3** | 0.3452 | 0.2681 | 0.6370 | 0.9029 | Eng. | 7324 / 1831 / 4349 |
| **LayoutXLM** | 0.5977 | 0.3295 | 0.4489 | 0.7550 | Spa. | 8115 / 2028 / 4426 |
## Citation
If you find our research interesting, please cite our work. πβοΈ
```bibtex
@article{de2024merit,
title={The MERIT Dataset: Modelling and Efficiently Rendering Interpretable Transcripts},
author={de Rodrigo, I and Sanchez-Cuadrado, A and Boal, J and Lopez-Lopez, AJ},
journal={arXiv preprint arXiv:2409.00447},
year={2024}
} |