danielrosehill commited on
Commit
e9e8252
Β·
1 Parent(s): 10857cf
Files changed (1) hide show
  1. README.md +253 -0
README.md ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ tags:
6
+ - climate
7
+ pretty_name: IFVI Global Value Factors Database, Data Analysis Refactor, V2
8
+ size_categories:
9
+ - 100K<n<1M
10
+ ---
11
+
12
+ # Data Overview: Data Analysis Refactoring V2
13
+
14
+ [![Dataset](https://img.shields.io/badge/πŸ€—%20Hugging%20Face-Dataset-blue)](https://huggingface.co/datasets/danielrosehill/IFVI-Global-Value-Factors-Dataset-V2)
15
+
16
+ **Global Value Factors Database (GVFD)**
17
+ **International Foundation for Valuing Impacts (IFVI)**
18
+ Prepared by: *Daniel Rosehill*
19
+
20
+ ---
21
+
22
+ ## Introduction
23
+
24
+ In late 2024, the International Foundation for Valuing Impacts (IFVI) released the **Global Value Factors Database (GVFD)**. This pioneering dataset provides a framework for converting non-traditional impacts into financial terms, offering a new lens for evaluating global value creation. For the full scope, methodology, and theoretical underpinnings, I encourage readers to consult the official IFVI website and accompanying documentation.
25
+
26
+ This document presents an overview of my **independent refactoring effort**, undertaken to make the GVFD more accessible for data analysis, machine learning, and visualization workflows. The IFVI kindly granted consent for the republication of their data in this format. However, I take sole responsibility for any errors introduced in the refactoring process.
27
+
28
+ The dataset continues to be governed by IFVI’s terms of use, as set out in the original publication (available at [ifvi.org](https://ifvi.org)). My work here is based on the **first release** of the GVFD. Should IFVI publish subsequent versions, they supersede the dataset refactored in this project.
29
+
30
+ ---
31
+
32
+ ## Refactoring Purpose and Approach
33
+
34
+ The original GVFD was released as a single `.xlsm` (macro-enabled Excel) file. While suitable for exploratory work, this structure posed limitations for reproducible data workflows and programmatic use.
35
+
36
+ My primary aim was to reformat the GVFD for **machine readability** and **workflow compatibility**, especially in contexts requiring:
37
+
38
+ * **Data analysis** (e.g., using R or Python libraries such as pandas or tidyverse).
39
+ * **Visualization** (e.g., dashboards or BI tools).
40
+ * **Interoperability** (integration with geospatial or statistical workflows).
41
+
42
+ To achieve this, the following steps were taken:
43
+
44
+ 1. Conversion of the original dataset to **CSV format**.
45
+ 2. Splitting of the data into **separate CSV files**, one for each value factor category.
46
+ 3. Creation of **structured JSON files**, reflecting the data’s original hierarchical presentation.
47
+ 4. Production of **compact Parquet versions**, auto-generated via Hugging Face for efficient querying and storage.
48
+
49
+ ---
50
+
51
+ ## Data Edits (Non-Substantive)
52
+
53
+ No substantive changes were made to IFVI’s data values or methodologies. However, I applied several light-touch edits to improve usability and consistency:
54
+
55
+ ### 1. Country Standardization
56
+
57
+ * Country names as listed in the original dataset were mapped to **ISO Alpha-2 codes**.
58
+ * Both the **original names** and their **ISO equivalents** are retained in the refactored dataset.
59
+ * Non-sovereign entities (e.g., certain territories, U.S. states) without ISO codes were omitted.
60
+
61
+ ### 2. Currency Formatting
62
+
63
+ * The GVFD values are denominated in **U.S. dollars**.
64
+ * To preserve numeric integrity, I removed dollar signs (`$`) from all values.
65
+ * Currency denomination is now recorded in the dataset’s **metadata and documentation** rather than embedded in each cell.
66
+
67
+ ### 3. Structure and Accessibility
68
+
69
+ * **JSON representations** preserve the original units and structure of the GVFD.
70
+ * **Country-level JSONs** were generated to allow users to focus on all value factors within a single nation.
71
+ * A **combined dataset** was also provided, enabling both broad and granular analysis.
72
+
73
+ ---
74
+
75
+ ## Outputs
76
+
77
+ The refactored GVFD is now available in the following formats:
78
+
79
+ * **CSV**: Individual files by value factor category.
80
+ * **JSON**: Both full dataset and country-level breakdowns.
81
+ * **Parquet**: Compact, machine-friendly versions auto-generated for efficiency.
82
+
83
+ Each format is accompanied by metadata documenting units, denominations, and data lineage.
84
+
85
+ The GVFD represents a milestone in the effort to measure and assign value to non-traditional impacts. My **Data Analysis Refactoring V2** initiative is intended to extend the usability of IFVI’s work by making the dataset friendlier for modern analysis pipelines.
86
+
87
+ I am grateful to IFVI for granting permission to republish the data in this restructured form. Any inaccuracies or errors in the refactoring are solely my own.
88
+
89
+ ---
90
+
91
+ ## Source Data
92
+
93
+ **Original File:** `source/IFVI_Environmental Methodology_Global Value Factor Database V2.xlsm`
94
+
95
+ - Excel workbook containing multiple sheets with environmental impact data
96
+ - Complex tabular format with countries as columns and impact categories as rows
97
+ - Contains metadata rows for ISO codes and regional classifications
98
+
99
+ ## Processing Steps
100
+
101
+ ### Step 1: Excel to CSV Extraction
102
+
103
+ **Input:** Excel workbook with multiple sheets
104
+ **Output:** Individual CSV files per sheet in `data/individual-sheets/`
105
+
106
+ **Files Generated:**
107
+ - `air-pollution.csv`
108
+ - `ghgs.csv`
109
+ - `land-use-and-conversion.csv`
110
+ - `waste.csv`
111
+ - `water-consumption.csv`
112
+ - `water-pollution.csv`
113
+
114
+ **Format:** Tab-separated values with:
115
+ - Row 1: Country names (starting column 2)
116
+ - Row 3: ISO codes (starting column 5)
117
+ - Row 4: Regional classifications (starting column 6)
118
+ - Row 5+: Impact category data
119
+
120
+ ### Step 2: CSV Cleaning and Standardization
121
+
122
+ **Script:** `clean_csv_files.py`
123
+ **Input:** Raw individual CSV files
124
+ **Output:** Cleaned CSV files in `data/cleaned-sheets/`
125
+
126
+ **Processing Actions:**
127
+ - Standardized column separators to tabs
128
+ - Removed empty rows and columns
129
+ - Normalized numeric formatting
130
+ - Preserved original structure for downstream processing
131
+
132
+ ### Step 3: JSON Conversion with ISO Code Correction
133
+
134
+ **Script:** `convert_to_json.py` (primary conversion)
135
+ **Input:** Individual sheet CSV files
136
+ **Output:**
137
+ - `data/json/ifvi_environmental_data.json` (hierarchical format)
138
+ - `data/json/ifvi_environmental_data_compact.json` (flat format)
139
+
140
+
141
+ ### Step 4: Country-Level Analysis
142
+
143
+ **Script:** `country_analysis.py`
144
+ **Input:** `ifvi_environmental_data_compact.json`
145
+ **Output:** Country aggregation files in `data/country-analysis/`
146
+
147
+ **Generated Files:**
148
+ - `countries_aggregated.json` - Complete country-level aggregations
149
+ - `countries_summary.csv` - Summary statistics per country
150
+ - `iso_code_mapping.csv` - Country to ISO code reference
151
+ - `iso_code_mapping.json` - JSON format ISO mapping
152
+
153
+
154
+ ## Output Data Formats
155
+
156
+ ### Hierarchical JSON Structure
157
+ ```json
158
+ {
159
+ "countries": {
160
+ "CountryName": {
161
+ "metadata": { "iso_code": "XXX", "region": "Region" },
162
+ "categories": {
163
+ "CategoryName": {
164
+ "regions": {
165
+ "RegionName": {
166
+ "datasets": {
167
+ "DatasetName": {
168
+ "values": [...],
169
+ "statistics": { "mean": X, "min": Y, "max": Z }
170
+ }
171
+ }
172
+ }
173
+ }
174
+ }
175
+ }
176
+ }
177
+ }
178
+ }
179
+ ```
180
+
181
+ ### Compact JSON Structure
182
+ ```json
183
+ [
184
+ {
185
+ "country": "CountryName",
186
+ "iso_code": "XXX",
187
+ "region": "Region",
188
+ "category": "CategoryName",
189
+ "subcategory": "SubcategoryName",
190
+ "dataset": "DatasetName",
191
+ "value": 123.45
192
+ }
193
+ ]
194
+ ```
195
+
196
+ ## Repository Structure
197
+
198
+ ```
199
+ IFVI-GVFD-0825/
200
+ β”œβ”€β”€ source/ # Original Excel file
201
+ β”œβ”€β”€ data/
202
+ β”‚ β”œβ”€β”€ individual-sheets/ # Raw CSV extracts
203
+ β”‚ β”œβ”€β”€ cleaned-sheets/ # Standardized CSVs
204
+ β”‚ β”œβ”€β”€ json/ # Primary JSON outputs
205
+ β”‚ └── country-analysis/ # Country-level aggregations
206
+ β”œβ”€β”€ processing.md # This documentation
207
+ β”œβ”€β”€ README.md # Repository overview
208
+ └── [processing scripts] # Python conversion scripts
209
+ ```
210
+
211
+ ## Processing Statistics
212
+
213
+ - **Total Countries:** 229
214
+ - **Countries with ISO Codes:** 205 (89.5%)
215
+ - **Environmental Categories:** 5 (air pollution, GHGs, land use, waste, water)
216
+ - **Total Data Points:** ~115,000 individual measurements
217
+ - **Regional Coverage:** 7 major world regions
218
+ - **File Size Reduction:** ~4.5MB compressed JSON vs. original Excel format
219
+
220
+ ## Data Validation
221
+
222
+ ### ISO Code Validation
223
+ - Cross-referenced country names with standard ISO 3166-1 alpha-3 codes
224
+ - Manual verification of 40+ country mappings
225
+ - 89.5% coverage with valid ISO codes
226
+
227
+ ### Data Completeness
228
+ - Water consumption: Limited coverage (11 countries)
229
+ - Other categories: Near-complete coverage (216-217 countries each)
230
+ - No missing value imputation performed (preserves data integrity)
231
+
232
+ ### Regional Distribution Validation
233
+ - Verified regional classifications against World Bank standards
234
+ - Identified and flagged anomalous regional values for review
235
+
236
+ ## Usage Recommendations
237
+
238
+ ### For Analysis
239
+ - Use `ifvi_environmental_data_compact.json` for data science workflows
240
+ - Use `countries_aggregated.json` for country-level comparisons
241
+ - Reference `iso_code_mapping.csv` for geographic joins
242
+
243
+ ### For Applications
244
+ - Hierarchical JSON provides nested access patterns
245
+ - Compact JSON enables fast loading and filtering
246
+ - Country analysis files support dashboard and visualization needs
247
+
248
+ ## Future Enhancements
249
+
250
+ - Automated ISO code validation against external APIs
251
+ - Time series analysis if historical data becomes available
252
+ - Data quality scoring and completeness metrics
253
+ - Integration with additional environmental datasets