import os; os.environ["CUDA_VISIBLE_DEVICES"]="3" import argparse import time import datasets import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig MODEL_ID = "Qwen/Qwen3-4B-Instruct-2507" if __name__ == "__main__": # Parse args parser = argparse.ArgumentParser() parser.add_argument("--num-blocks", "-n", type=int, default=None) parser.add_argument("--max-batch-tokens", "-b", type=int, default=None) parser.add_argument( "--attn", type=str, default="paged_attention|kernels-community/flash-attn", help="Attention implementation" ) parser.add_argument("--samples", type=int, default=500) args = parser.parse_args() # Prepare model model = AutoModelForCausalLM.from_pretrained( MODEL_ID, attn_implementation=args.attn, dtype=torch.bfloat16, ) model = model.cuda().eval() # Prepare tokenizer and dataset tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, padding_side="left") dataset = datasets.load_dataset("openai/gsm8k", "socratic", split="test") dataset = dataset.select(range(args.samples)) tokenized_datasets = dataset.map(lambda x: tokenizer(x["question"]), batched=True) simple_batch_inputs = [item["input_ids"] for item in tokenized_datasets] # Prepare generation config generation_config = GenerationConfig( max_new_tokens=512, use_cuda_graph=False, # Not supported for simple version eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, do_sample=False, num_blocks=args.num_blocks, max_batch_tokens=args.max_batch_tokens, ) # Warmup iterations _ = model.generate_batch( inputs=simple_batch_inputs[: min(5, args.samples)], generation_config=generation_config, slice_inputs=True, ) # Actual batch generation print("--- Running CB Generation Example ---") start_time = time.time() batch_outputs = model.generate_batch( inputs=simple_batch_inputs, generation_config=generation_config, slice_inputs=True, ) end_time = time.time() print("Done with batch generation.") # Decode outputs token_count = 0 for i, request in enumerate(batch_outputs): input_text = tokenizer.decode(batch_outputs[request].prompt_ids, skip_special_tokens=True) # Try to decode the output try: output_text = tokenizer.decode(batch_outputs[request].generated_tokens, skip_special_tokens=True) token_count += len(batch_outputs[request].generated_tokens[1:]) except Exception as e: print(f"Decoding failed for request {request}: {e}") continue # Compute stats and maybe print them gen_time = end_time - start_time tok_per_sec = token_count / gen_time print("-" * 20) print("--- Finished CB Generation Example ---\n") print(f"CB generation took: {gen_time:.2f} seconds for {token_count} tokens. {tok_per_sec:.2f}tok/s") # python load.py -n 512 -b 32 --samples 100 # CB generation took: 101.44 seconds for 49197 tokens. 484.97tok/s