--- dataset_name: EMS-Knowledge pretty_name: EMS Knowledge Base (Flattened Sections) language: - en license: mit tags: - emergency-medical-services - ems - medical - knowledge-base - retrieval - question-answering size_categories: - 10K 💡 The JSON files are heterogeneous collections of (section → text) entries. > The table view flattens these into uniform rows for easier indexing and filtering. --- ## Dataset Structure **Split**: `train` (tabular) **Columns** - `file` (string) - `source` (string) - `topic` (string) - `section` (string) - `text` (string) **Cardinality**: depends on the number of sections parsed from the JSONs. (Each JSON entry becomes one row.) --- ## Citation If you use EMS-MCQA in your work, please cite: ```bibtex @misc{ge2025expertguidedpromptingretrievalaugmentedgeneration, title = {Expert-Guided Prompting and Retrieval-Augmented Generation for Emergency Medical Service Question Answering}, author = {Xueren Ge and Sahil Murtaza and Anthony Cortez and Homa Alemzadeh}, year = {2025}, eprint = {2511.10900}, archivePrefix = {arXiv}, primaryClass = {cs.CL}, url = {https://arxiv.org/abs/2511.10900}, } ``` --- ## Quick Start ```python from datasets import load_dataset # Load table (single split named "train") ds = load_dataset("Xueren/EMS-Knowledge", split="train") print(ds) print(ds[0]) # Filter by topic anatomy = ds.filter(lambda x: x["topic"] == "anatomy") # Simple keyword search over section text needle = "spinal cord" hits = ds.filter(lambda x: needle.lower() in x["text"].lower()) print(len(hits), "matches for", needle) # Group sections by file/topic (example) by_file = ds.to_pandas().groupby("file").size().sort_values(ascending=False) print(by_file.head())