--- license: cc-by-4.0 language: - pl task_categories: - text-to-speech - automatic-speech-recognition - audio-to-audio - audio-classification - text-to-audio - voice-activity-detection tags: - TTS - farsi - yodas - quality pretty_name: YodaSpeech dataset_info: features: - name: __key__ dtype: string - name: mp3 dtype: audio: sampling_rate: 24000 - name: text dtype: string - name: language dtype: string - name: speaker_id dtype: string - name: dnsmos dtype: float64 splits: - name: train num_bytes: 680427539.778 num_examples: 14586 download_size: 636505858 dataset_size: 680427539.778 configs: - config_name: default data_files: - split: train path: data/train-* extra_gated_prompt: "Get access this dataset by contacting me via email: [cyprienoucortex@gmail.com](cyprienoucortex@gmail.com)" --- # YodaLingua-Polish **YodaLingua** is a high-quality speech dataset designed for training text-to-speech (TTS) systems, ASR models, and any application requiring clean, well-aligned audio–text pairs. This release contains the **Polish** portion of the multilingual YodaLingua collection. ## 🧾 Dataset Overview | Property | Value | |---------|-------| | **Total clips** | 329,740 audio–transcription pairs | | **Total duration** | 893 hours | | **Speakers** | 11,357 distinct speakers | | **Audio format** | MP3 • mono • 24 kHz • 16-bit | | **License** | Permissive — commercial use allowed | All audio clips are noise-reduced, normalized, and matched with accurate transcriptions. --- ## 🌍 Multilingual Versions Other languages are available in the YodaLingua multilingual collection: 👉 https://huggingface.co/collections/Thomcles/yodalingua --- We apply a multi-stage pipeline to ensure maximum data quality: ### **1. Standardization** - Convert to WAV - Mono channel - Resample to **24 kHz** - **16-bit** sample width - Normalize to **–20 dBFS** (with volume correction between –3 and +3 dB) ### **2. Noise Reduction** Advanced denoising applied to improve clarity and remove background artifacts. ### **3. Speaker Diarization** Segment long recordings by speaker to improve diversity and ensure speaker-consistent utterances. ### **4. Voice Activity Detection (VAD)** Merge consecutive VAD segments from the same speaker into clean utterances of **3–30 s**. ### **5. Transcription** State-of-the-art ASR models produce accurate text transcripts. ### **6. Quality Filtering** Clips are filtered using **DNSMOS P.835 OVRL**; only samples with a score **> 2.7** are retained. ## 📚 Loading the Dataset ```python from datasets import load_dataset ds = load_dataset("Thomcles/YodaLingua-Polish") ``` --- ## Contact e-mail : [cyprienoucortex@gmail.com](cyprienoucortex@gmail.com)