Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
SnowCharmQ nielsr HF Staff commited on
Commit
bc53186
·
verified ·
1 Parent(s): a8164ea

Add link to code and paper (#3)

Browse files

- Add link to code and paper (a9addb4e0dd6afc827155f5b1d0ae3c0706db4f1)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +6 -4
README.md CHANGED
@@ -1,4 +1,7 @@
1
  ---
 
 
 
2
  dataset_info:
3
  - config_name: Books
4
  features:
@@ -145,19 +148,18 @@ configs:
145
  path: Movies_and_TV/val-*
146
  - split: test
147
  path: Movies_and_TV/test-*
148
- license: cc-by-nc-4.0
149
- task_categories:
150
- - text-generation
151
  ---
152
 
153
  # Difference-aware Personalized Learning (DPL) Dataset
154
 
155
  This dataset is used in the paper:
156
 
157
- > [Measuring What Makes You Unique: Difference-Aware User Modeling for Enhancing LLM Personalization](https://arxiv.org/abs/2503.02450)
158
  >
159
  > Yilun Qiu, Xiaoyan Zhao, Yang Zhang, Yimeng Bai, Wenjie Wang, Hong Cheng, Fuli Feng, Tat-Seng Chua
160
 
 
 
161
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/67242d62055ce33014cf24d5/j2lG852s2qTk8A3bg9zVg.png)
162
 
163
  This dataset is an adaptation of the Amazon Reviews'23 dataset. It contains user reviews for Books, CDs & Vinyl, and Movies & TV. Each review includes user ID, profile information (ASIN, rating, text, timestamp, title), and the review data (ASIN, rating, text, timestamp, title). The dataset is split into train, validation, and test sets for each category.
 
1
  ---
2
+ license: cc-by-nc-4.0
3
+ task_categories:
4
+ - text-generation
5
  dataset_info:
6
  - config_name: Books
7
  features:
 
148
  path: Movies_and_TV/val-*
149
  - split: test
150
  path: Movies_and_TV/test-*
 
 
 
151
  ---
152
 
153
  # Difference-aware Personalized Learning (DPL) Dataset
154
 
155
  This dataset is used in the paper:
156
 
157
+ > [Measuring What Makes You Unique: Difference-Aware User Modeling for Enhancing LLM Personalization](https://huggingface.co/papers/2503.02450)
158
  >
159
  > Yilun Qiu, Xiaoyan Zhao, Yang Zhang, Yimeng Bai, Wenjie Wang, Hong Cheng, Fuli Feng, Tat-Seng Chua
160
 
161
+ [Code](https://github.com/SnowCharmQ/DPL)
162
+
163
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/67242d62055ce33014cf24d5/j2lG852s2qTk8A3bg9zVg.png)
164
 
165
  This dataset is an adaptation of the Amazon Reviews'23 dataset. It contains user reviews for Books, CDs & Vinyl, and Movies & TV. Each review includes user ID, profile information (ASIN, rating, text, timestamp, title), and the review data (ASIN, rating, text, timestamp, title). The dataset is split into train, validation, and test sets for each category.