Upload unimorph.py with huggingface_hub
Browse files- unimorph.py +447 -0
unimorph.py
ADDED
|
@@ -0,0 +1,447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
from typing import Any, Dict, List, Tuple
|
| 3 |
+
|
| 4 |
+
import datasets
|
| 5 |
+
from datasets.download.download_manager import DownloadManager
|
| 6 |
+
|
| 7 |
+
from seacrowd.utils import schemas
|
| 8 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
| 9 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
| 10 |
+
|
| 11 |
+
_CITATION = """
|
| 12 |
+
@misc{batsuren2022unimorph,
|
| 13 |
+
title={UniMorph 4.0: Universal Morphology},
|
| 14 |
+
author={
|
| 15 |
+
Khuyagbaatar Batsuren and Omer Goldman and Salam Khalifa and Nizar
|
| 16 |
+
Habash and Witold Kieraś and Gábor Bella and Brian Leonard and Garrett
|
| 17 |
+
Nicolai and Kyle Gorman and Yustinus Ghanggo Ate and Maria Ryskina and
|
| 18 |
+
Sabrina J. Mielke and Elena Budianskaya and Charbel El-Khaissi and Tiago
|
| 19 |
+
Pimentel and Michael Gasser and William Lane and Mohit Raj and Matt
|
| 20 |
+
Coler and Jaime Rafael Montoya Samame and Delio Siticonatzi Camaiteri
|
| 21 |
+
and Benoît Sagot and Esaú Zumaeta Rojas and Didier López Francis and
|
| 22 |
+
Arturo Oncevay and Juan López Bautista and Gema Celeste Silva Villegas
|
| 23 |
+
and Lucas Torroba Hennigen and Adam Ek and David Guriel and Peter Dirix
|
| 24 |
+
and Jean-Philippe Bernardy and Andrey Scherbakov and Aziyana Bayyr-ool
|
| 25 |
+
and Antonios Anastasopoulos and Roberto Zariquiey and Karina Sheifer and
|
| 26 |
+
Sofya Ganieva and Hilaria Cruz and Ritván Karahóǧa and Stella
|
| 27 |
+
Markantonatou and George Pavlidis and Matvey Plugaryov and Elena
|
| 28 |
+
Klyachko and Ali Salehi and Candy Angulo and Jatayu Baxi and Andrew
|
| 29 |
+
Krizhanovsky and Natalia Krizhanovskaya and Elizabeth Salesky and Clara
|
| 30 |
+
Vania and Sardana Ivanova and Jennifer White and Rowan Hall Maudslay and
|
| 31 |
+
Josef Valvoda and Ran Zmigrod and Paula Czarnowska and Irene Nikkarinen
|
| 32 |
+
and Aelita Salchak and Brijesh Bhatt and Christopher Straughn and Zoey
|
| 33 |
+
Liu and Jonathan North Washington and Yuval Pinter and Duygu Ataman and
|
| 34 |
+
Marcin Wolinski and Totok Suhardijanto and Anna Yablonskaya and Niklas
|
| 35 |
+
Stoehr and Hossep Dolatian and Zahroh Nuriah and Shyam Ratan and Francis
|
| 36 |
+
M. Tyers and Edoardo M. Ponti and Grant Aiton and Aryaman Arora and
|
| 37 |
+
Richard J. Hatcher and Ritesh Kumar and Jeremiah Young and Daria
|
| 38 |
+
Rodionova and Anastasia Yemelina and Taras Andrushko and Igor Marchenko
|
| 39 |
+
and Polina Mashkovtseva and Alexandra Serova and Emily Prud'hommeaux and
|
| 40 |
+
Maria Nepomniashchaya and Fausto Giunchiglia and Eleanor Chodroff and
|
| 41 |
+
Mans Hulden and Miikka Silfverberg and Arya D. McCarthy and David
|
| 42 |
+
Yarowsky and Ryan Cotterell and Reut Tsarfaty and Ekaterina Vylomova},
|
| 43 |
+
year={2022},
|
| 44 |
+
eprint={2205.03608},
|
| 45 |
+
archivePrefix={arXiv},
|
| 46 |
+
primaryClass={cs.CL}
|
| 47 |
+
}
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
_LOCAL = False
|
| 51 |
+
_LANGUAGES = ["ind", "kod", "ceb", "hil", "tgl"]
|
| 52 |
+
_DATASETNAME = "unimorph"
|
| 53 |
+
_DESCRIPTION = """\
|
| 54 |
+
The Universal Morphology (UniMorph) project is a collaborative effort providing
|
| 55 |
+
broad-coverage instantiated normalized morphological inflection tables for
|
| 56 |
+
undreds of diverse world languages. The project comprises two major thrusts: a
|
| 57 |
+
language-independent feature schema for rich morphological annotation, and a
|
| 58 |
+
type-level resource of annotated data in diverse languages realizing that
|
| 59 |
+
schema. 5 Austronesian languages spoken in Southeast Asia, consisting 2
|
| 60 |
+
Malayo-Polynesian languages and 3 Greater Central Philippine languages, become
|
| 61 |
+
the part of UniMorph 4.0 release.
|
| 62 |
+
"""
|
| 63 |
+
|
| 64 |
+
_HOMEPAGE = "https://unimorph.github.io"
|
| 65 |
+
_LICENSE = Licenses.CC_BY_SA_3_0.value
|
| 66 |
+
_URL = "https://raw.githubusercontent.com/unimorph/"
|
| 67 |
+
|
| 68 |
+
_SUPPORTED_TASKS = [Tasks.MORPHOLOGICAL_INFLECTION]
|
| 69 |
+
_SOURCE_VERSION = "4.0.0"
|
| 70 |
+
_SEACROWD_VERSION = "2024.06.20"
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
class UnimorphDataset(datasets.GeneratorBasedBuilder):
|
| 74 |
+
"""Unimorh 4.0 dataset by Batsuren et al., (2022)"""
|
| 75 |
+
|
| 76 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
| 77 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
| 78 |
+
|
| 79 |
+
SEACROWD_SCHEMA_NAME = "pairs_multi"
|
| 80 |
+
|
| 81 |
+
dataset_names = sorted([f"{_DATASETNAME}_{lang}" for lang in _LANGUAGES])
|
| 82 |
+
BUILDER_CONFIGS = []
|
| 83 |
+
for name in dataset_names:
|
| 84 |
+
source_config = SEACrowdConfig(
|
| 85 |
+
name=f"{name}_source",
|
| 86 |
+
version=SOURCE_VERSION,
|
| 87 |
+
description=f"{_DATASETNAME} source schema",
|
| 88 |
+
schema="source",
|
| 89 |
+
subset_id=name,
|
| 90 |
+
)
|
| 91 |
+
BUILDER_CONFIGS.append(source_config)
|
| 92 |
+
seacrowd_config = SEACrowdConfig(
|
| 93 |
+
name=f"{name}_seacrowd_{SEACROWD_SCHEMA_NAME}",
|
| 94 |
+
version=SEACROWD_VERSION,
|
| 95 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
| 96 |
+
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
|
| 97 |
+
subset_id=name,
|
| 98 |
+
)
|
| 99 |
+
BUILDER_CONFIGS.append(seacrowd_config)
|
| 100 |
+
|
| 101 |
+
# Add configuration that allows loading all datasets at once.
|
| 102 |
+
BUILDER_CONFIGS.extend(
|
| 103 |
+
[
|
| 104 |
+
# unimorph_source
|
| 105 |
+
SEACrowdConfig(
|
| 106 |
+
name=f"{_DATASETNAME}_source",
|
| 107 |
+
version=SOURCE_VERSION,
|
| 108 |
+
description=f"{_DATASETNAME} source schema (all)",
|
| 109 |
+
schema="source",
|
| 110 |
+
subset_id=_DATASETNAME,
|
| 111 |
+
),
|
| 112 |
+
# unimorph_seacrowd_pairs
|
| 113 |
+
SEACrowdConfig(
|
| 114 |
+
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
|
| 115 |
+
version=SEACROWD_VERSION,
|
| 116 |
+
description=f"{_DATASETNAME} SEACrowd schema (all)",
|
| 117 |
+
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
|
| 118 |
+
subset_id=_DATASETNAME,
|
| 119 |
+
),
|
| 120 |
+
]
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
| 124 |
+
# https://huggingface.co/datasets/universal_morphologies/blob/main/universal_morphologies.py
|
| 125 |
+
CLASS_CATEGORIES = {
|
| 126 |
+
"Aktionsart": ["STAT", "DYN", "TEL", "ATEL", "PCT", "DUR", "ACH", "ACCMP", "SEMEL", "ACTY"],
|
| 127 |
+
"Animacy": ["ANIM", "INAN", "HUM", "NHUM"],
|
| 128 |
+
"Argument_Marking": [
|
| 129 |
+
"ARGNO1S",
|
| 130 |
+
"ARGNO2S",
|
| 131 |
+
"ARGNO3S",
|
| 132 |
+
"ARGNO1P",
|
| 133 |
+
"ARGNO2P",
|
| 134 |
+
"ARGNO3P",
|
| 135 |
+
"ARGAC1S",
|
| 136 |
+
"ARGAC2S",
|
| 137 |
+
"ARGAC3S",
|
| 138 |
+
"ARGAC1P",
|
| 139 |
+
"ARGAC2P",
|
| 140 |
+
"ARGAC3P",
|
| 141 |
+
"ARGAB1S",
|
| 142 |
+
"ARGAB2S",
|
| 143 |
+
"ARGAB3S",
|
| 144 |
+
"ARGAB1P",
|
| 145 |
+
"ARGAB2P",
|
| 146 |
+
"ARGAB3P",
|
| 147 |
+
"ARGER1S",
|
| 148 |
+
"ARGER2S",
|
| 149 |
+
"ARGER3S",
|
| 150 |
+
"ARGER1P",
|
| 151 |
+
"ARGER2P",
|
| 152 |
+
"ARGER3P",
|
| 153 |
+
"ARGDA1S",
|
| 154 |
+
"ARGDA2S",
|
| 155 |
+
"ARGDA3S",
|
| 156 |
+
"ARGDA1P",
|
| 157 |
+
"ARGDA2P",
|
| 158 |
+
"ARGDA3P",
|
| 159 |
+
"ARGBE1S",
|
| 160 |
+
"ARGBE2S",
|
| 161 |
+
"ARGBE3S",
|
| 162 |
+
"ARGBE1P",
|
| 163 |
+
"ARGBE2P",
|
| 164 |
+
"ARGBE3P",
|
| 165 |
+
],
|
| 166 |
+
"Aspect": ["IPFV", "PFV", "PRF", "PROG", "PROSP", "ITER", "HAB"],
|
| 167 |
+
"Case": [
|
| 168 |
+
"NOM",
|
| 169 |
+
"ACC",
|
| 170 |
+
"ERG",
|
| 171 |
+
"ABS",
|
| 172 |
+
"NOMS",
|
| 173 |
+
"DAT",
|
| 174 |
+
"BEN",
|
| 175 |
+
"PRP",
|
| 176 |
+
"GEN",
|
| 177 |
+
"REL",
|
| 178 |
+
"PRT",
|
| 179 |
+
"INS",
|
| 180 |
+
"COM",
|
| 181 |
+
"VOC",
|
| 182 |
+
"COMPV",
|
| 183 |
+
"EQTV",
|
| 184 |
+
"PRIV",
|
| 185 |
+
"PROPR",
|
| 186 |
+
"AVR",
|
| 187 |
+
"FRML",
|
| 188 |
+
"TRANS",
|
| 189 |
+
"BYWAY",
|
| 190 |
+
"INTER",
|
| 191 |
+
"AT",
|
| 192 |
+
"POST",
|
| 193 |
+
"IN",
|
| 194 |
+
"CIRC",
|
| 195 |
+
"ANTE",
|
| 196 |
+
"APUD",
|
| 197 |
+
"ON",
|
| 198 |
+
"ONHR",
|
| 199 |
+
"ONVR",
|
| 200 |
+
"SUB",
|
| 201 |
+
"REM",
|
| 202 |
+
"PROXM",
|
| 203 |
+
"ESS",
|
| 204 |
+
"ALL",
|
| 205 |
+
"ABL",
|
| 206 |
+
"APPRX",
|
| 207 |
+
"TERM",
|
| 208 |
+
],
|
| 209 |
+
"Comparison": ["CMPR", "SPRL", "AB", "RL", "EQT"],
|
| 210 |
+
"Definiteness": ["DEF", "INDF", "SPEC", "NSPEC"],
|
| 211 |
+
"Deixis": ["PROX", "MED", "REMT", "REF1", "REF2", "NOREF", "PHOR", "VIS", "NVIS", "ABV", "EVEN", "BEL"],
|
| 212 |
+
"Evidentiality": ["FH", "DRCT", "SEN", "VISU", "NVSEN", "AUD", "NFH", "QUOT", "RPRT", "HRSY", "INFER", "ASSUM"],
|
| 213 |
+
"Finiteness": ["FIN", "NFIN"],
|
| 214 |
+
"Gender": [
|
| 215 |
+
"MASC",
|
| 216 |
+
"FEM",
|
| 217 |
+
"NEUT",
|
| 218 |
+
"NAKH1",
|
| 219 |
+
"NAKH2",
|
| 220 |
+
"NAKH3",
|
| 221 |
+
"NAKH4",
|
| 222 |
+
"NAKH5",
|
| 223 |
+
"NAKH6",
|
| 224 |
+
"NAKH7",
|
| 225 |
+
"NAKH8",
|
| 226 |
+
"BANTU1",
|
| 227 |
+
"BANTU2",
|
| 228 |
+
"BANTU3",
|
| 229 |
+
"BANTU4",
|
| 230 |
+
"BANTU5",
|
| 231 |
+
"BANTU6",
|
| 232 |
+
"BANTU7",
|
| 233 |
+
"BANTU8",
|
| 234 |
+
"BANTU9",
|
| 235 |
+
"BANTU10",
|
| 236 |
+
"BANTU11",
|
| 237 |
+
"BANTU12",
|
| 238 |
+
"BANTU13",
|
| 239 |
+
"BANTU14",
|
| 240 |
+
"BANTU15",
|
| 241 |
+
"BANTU16",
|
| 242 |
+
"BANTU17",
|
| 243 |
+
"BANTU18",
|
| 244 |
+
"BANTU19",
|
| 245 |
+
"BANTU20",
|
| 246 |
+
"BANTU21",
|
| 247 |
+
"BANTU22",
|
| 248 |
+
"BANTU23",
|
| 249 |
+
],
|
| 250 |
+
"Information_Structure": ["TOP", "FOC"],
|
| 251 |
+
"Interrogativity": ["DECL", "INT"],
|
| 252 |
+
"Language_Specific": [
|
| 253 |
+
"LGSPEC1",
|
| 254 |
+
"LGSPEC2",
|
| 255 |
+
"LGSPEC3",
|
| 256 |
+
"LGSPEC4",
|
| 257 |
+
"LGSPEC5",
|
| 258 |
+
"LGSPEC6",
|
| 259 |
+
"LGSPEC7",
|
| 260 |
+
"LGSPEC8",
|
| 261 |
+
"LGSPEC9",
|
| 262 |
+
"LGSPEC10",
|
| 263 |
+
],
|
| 264 |
+
"Mood": [
|
| 265 |
+
"IND",
|
| 266 |
+
"SBJV",
|
| 267 |
+
"REAL",
|
| 268 |
+
"IRR",
|
| 269 |
+
"AUPRP",
|
| 270 |
+
"AUNPRP",
|
| 271 |
+
"IMP",
|
| 272 |
+
"COND",
|
| 273 |
+
"PURP",
|
| 274 |
+
"INTEN",
|
| 275 |
+
"POT",
|
| 276 |
+
"LKLY",
|
| 277 |
+
"ADM",
|
| 278 |
+
"OBLIG",
|
| 279 |
+
"DEB",
|
| 280 |
+
"PERM",
|
| 281 |
+
"DED",
|
| 282 |
+
"SIM",
|
| 283 |
+
"OPT",
|
| 284 |
+
],
|
| 285 |
+
"Number": ["SG", "PL", "GRPL", "DU", "TRI", "PAUC", "GRPAUC", "INVN"],
|
| 286 |
+
"Part_Of_Speech": [
|
| 287 |
+
"N",
|
| 288 |
+
"PROPN",
|
| 289 |
+
"ADJ",
|
| 290 |
+
"PRO",
|
| 291 |
+
"CLF",
|
| 292 |
+
"ART",
|
| 293 |
+
"DET",
|
| 294 |
+
"V",
|
| 295 |
+
"ADV",
|
| 296 |
+
"AUX",
|
| 297 |
+
"V.PTCP",
|
| 298 |
+
"V.MSDR",
|
| 299 |
+
"V.CVB",
|
| 300 |
+
"ADP",
|
| 301 |
+
"COMP",
|
| 302 |
+
"CONJ",
|
| 303 |
+
"NUM",
|
| 304 |
+
"PART",
|
| 305 |
+
"INTJ",
|
| 306 |
+
],
|
| 307 |
+
"Person": ["0", "1", "2", "3", "4", "INCL", "EXCL", "PRX", "OBV"],
|
| 308 |
+
"Polarity": ["POS", "NEG"],
|
| 309 |
+
"Politeness": [
|
| 310 |
+
"INFM",
|
| 311 |
+
"FORM",
|
| 312 |
+
"ELEV",
|
| 313 |
+
"HUMB",
|
| 314 |
+
"POL",
|
| 315 |
+
"AVOID",
|
| 316 |
+
"LOW",
|
| 317 |
+
"HIGH",
|
| 318 |
+
"STELEV",
|
| 319 |
+
"STSUPR",
|
| 320 |
+
"LIT",
|
| 321 |
+
"FOREG",
|
| 322 |
+
"COL",
|
| 323 |
+
],
|
| 324 |
+
"Possession": [
|
| 325 |
+
"ALN",
|
| 326 |
+
"NALN",
|
| 327 |
+
"PSS1S",
|
| 328 |
+
"PSS2S",
|
| 329 |
+
"PSS2SF",
|
| 330 |
+
"PSS2SM",
|
| 331 |
+
"PSS2SINFM",
|
| 332 |
+
"PSS2SFORM",
|
| 333 |
+
"PSS3S",
|
| 334 |
+
"PSS3SF",
|
| 335 |
+
"PSS3SM",
|
| 336 |
+
"PSS1D",
|
| 337 |
+
"PSS1DI",
|
| 338 |
+
"PSS1DE",
|
| 339 |
+
"PSS2D",
|
| 340 |
+
"PSS2DM",
|
| 341 |
+
"PSS2DF",
|
| 342 |
+
"PSS3D",
|
| 343 |
+
"PSS3DF",
|
| 344 |
+
"PSS3DM",
|
| 345 |
+
"PSS1P",
|
| 346 |
+
"PSS1PI",
|
| 347 |
+
"PSS1PE",
|
| 348 |
+
"PSS2P",
|
| 349 |
+
"PSS2PF",
|
| 350 |
+
"PSS2PM",
|
| 351 |
+
"PSS3PF",
|
| 352 |
+
"PSS3PM",
|
| 353 |
+
],
|
| 354 |
+
"Switch_Reference": ["SS", "SSADV", "DS", "DSADV", "OR", "SIMMA", "SEQMA", "LOG"],
|
| 355 |
+
"Tense": ["PRS", "PST", "FUT", "IMMED", "HOD", "1DAY", "RCT", "RMT"],
|
| 356 |
+
"Valency": ["IMPRS", "INTR", "TR", "DITR", "REFL", "RECP", "CAUS", "APPL"],
|
| 357 |
+
"Voice": ["ACT", "MID", "PASS", "ANTIP", "DIR", "INV", "AGFOC", "PFOC", "LFOC", "BFOC", "ACFOC", "IFOC", "CFOC"],
|
| 358 |
+
}
|
| 359 |
+
|
| 360 |
+
TAG_TO_CAT = dict([(tag, cat) for cat, tags in CLASS_CATEGORIES.items() for tag in tags])
|
| 361 |
+
CLASS_LABELS = [feat for _, category in CLASS_CATEGORIES.items() for feat in category]
|
| 362 |
+
|
| 363 |
+
def _info(self) -> datasets.DatasetInfo:
|
| 364 |
+
if self.config.schema == "source":
|
| 365 |
+
features = datasets.Features(
|
| 366 |
+
{
|
| 367 |
+
"lemma": datasets.Value("string"),
|
| 368 |
+
"forms": datasets.Sequence(
|
| 369 |
+
dict(
|
| 370 |
+
[("word", datasets.Value("string"))]
|
| 371 |
+
+ [(cat, datasets.Sequence(datasets.ClassLabel(names=tasks))) for cat, tasks in self.CLASS_CATEGORIES.items()]
|
| 372 |
+
+ [("Other", datasets.Sequence(datasets.Value("string")))] # for misspecified tags
|
| 373 |
+
)
|
| 374 |
+
),
|
| 375 |
+
}
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
if self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
| 379 |
+
all_features = [feat for _, category in self.CLASS_CATEGORIES.items() for feat in category]
|
| 380 |
+
features = schemas.pairs_multi_features(label_names=self.CLASS_LABELS)
|
| 381 |
+
|
| 382 |
+
return datasets.DatasetInfo(description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION)
|
| 383 |
+
|
| 384 |
+
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
|
| 385 |
+
"""Return SplitGenerators."""
|
| 386 |
+
source_data = []
|
| 387 |
+
|
| 388 |
+
lang = self.config.name.split("_")[1]
|
| 389 |
+
if lang in _LANGUAGES:
|
| 390 |
+
# Load data per language
|
| 391 |
+
source_data.append(dl_manager.download_and_extract(_URL + f"{lang}/main/{lang}"))
|
| 392 |
+
else:
|
| 393 |
+
# Load examples from all languages at once.
|
| 394 |
+
for lang in _LANGUAGES:
|
| 395 |
+
source_data.append(dl_manager.download_and_extract(_URL + f"{lang}/main/{lang}"))
|
| 396 |
+
|
| 397 |
+
return [
|
| 398 |
+
datasets.SplitGenerator(
|
| 399 |
+
name=datasets.Split.TRAIN,
|
| 400 |
+
gen_kwargs={
|
| 401 |
+
"filepaths": source_data,
|
| 402 |
+
},
|
| 403 |
+
)
|
| 404 |
+
]
|
| 405 |
+
|
| 406 |
+
def _generate_examples(self, filepaths: List[Path]) -> Tuple[int, Dict]:
|
| 407 |
+
"""Yield examples as (key, example) tuples"""
|
| 408 |
+
|
| 409 |
+
all_forms: Dict[str, List[Dict[str, Any]]] = {}
|
| 410 |
+
for source_file in filepaths:
|
| 411 |
+
with open(source_file, encoding="utf-8") as file:
|
| 412 |
+
for row in file:
|
| 413 |
+
if row.strip() == "" or row.strip().startswith("#"):
|
| 414 |
+
continue
|
| 415 |
+
lemma, word, tags = row.strip().split("\t")
|
| 416 |
+
all_forms[lemma] = all_forms.get(lemma, [])
|
| 417 |
+
tag_list = tags.replace("NDEF", "INDF").split(";")
|
| 418 |
+
form = dict([("word", word), ("Other", [])] + [(cat, []) for cat, tasks in self.CLASS_CATEGORIES.items()])
|
| 419 |
+
for tag_pre in tag_list:
|
| 420 |
+
tag = tag_pre.split("+")
|
| 421 |
+
if tag[0] in self.TAG_TO_CAT:
|
| 422 |
+
form[self.TAG_TO_CAT[tag[0]]] = tag
|
| 423 |
+
else:
|
| 424 |
+
form["Other"] += tag
|
| 425 |
+
all_forms[lemma] += [form]
|
| 426 |
+
|
| 427 |
+
if self.config.schema == "source":
|
| 428 |
+
for id_, (lemma, forms) in enumerate(all_forms.items()):
|
| 429 |
+
res = {"lemma": lemma, "forms": {}}
|
| 430 |
+
for k in ["word", "Other"] + list(self.CLASS_CATEGORIES.keys()):
|
| 431 |
+
res["forms"][k] = [form[k] for form in forms]
|
| 432 |
+
yield id_, res
|
| 433 |
+
|
| 434 |
+
if self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
| 435 |
+
idx = 0
|
| 436 |
+
for lemma, forms in all_forms.items():
|
| 437 |
+
for form in forms:
|
| 438 |
+
inflection = form.pop("word")
|
| 439 |
+
feats = [feat[0] for feat in list(form.values()) if feat and feat[0] in self.CLASS_LABELS]
|
| 440 |
+
example = {
|
| 441 |
+
"id": idx,
|
| 442 |
+
"text_1": lemma,
|
| 443 |
+
"text_2": inflection,
|
| 444 |
+
"label": feats,
|
| 445 |
+
}
|
| 446 |
+
idx += 1
|
| 447 |
+
yield idx, example
|