Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
hate-speech-detection
Languages:
English
Size:
100K - 1M
License:
| import re | |
| import math | |
| import pandas as pd | |
| from tqdm import tqdm | |
| seed = 7497 | |
| TOXIC_COLUMNS = [ | |
| "toxic", | |
| "severe_toxic", | |
| "obscene", | |
| "threat", | |
| "insult", | |
| "identity_hate", | |
| ] | |
| # Time and date regexes | |
| TIME = r"([0-9]{1,2}:[0-9]{2}( (am|AM|pm|PM))?)" | |
| DAY = r"([23]?(1(st)?|2(nd)?|3(rd)?|[4-9](th)?)|1[0-9](th)?)" | |
| MONTH = r"(January|February|March|April|May|June|July|August|September|October|November|December|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Nov|Dec)" | |
| YEAR = r"('?[0-9]{2}|[0-9]{4})" | |
| DATE = rf"(({DAY} {MONTH}|{MONTH} {DAY})(,? {YEAR})?)" | |
| TIMESTAMP = rf"((({TIME},? (\(UTC\) )?)?{DATE}|({DATE},? )?{TIME})(\s+\(UTC\))?)" | |
| # The 'talk' part at the end of a signature | |
| TALK = r"((\|\s*|\(\s*)?[tT]alk((\s*[-|β’, ]\s*|\s+)[cC]ontribs)?(\s*[-|)])?)" | |
| # IP addresses | |
| IP = r"([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3})" | |
| # Username and the username part of a the signature | |
| USERNAME = r"([^#<>[\]|{}/@\s]+)" | |
| USER_SIG = rf"((((?:\s)[-ββ]\s*)?(\((User:)?{USERNAME}\)|User:{USERNAME})|(?:\s)[-ββ]\s*{USERNAME})(\s+{TALK})?)" | |
| # A full signature | |
| SIGNATURE = rf"(((([-ββ]\s*)?{IP}(\s+{USER_SIG})?|(?:\s)[-ββ]\s*[uU]nsigned|{TALK}|{USER_SIG})(\s+{TIMESTAMP})?)|{TIMESTAMP}(\s+{TALK})?)" | |
| # List of the patterns to remove | |
| REGEX_REMOVE = [ | |
| r"^(\"+|'+)", # Initial quotation marks | |
| r"(\"+|'+)$", # Final quotation marks | |
| r"^REDIRECT.*$", # The whole comment is a redirect | |
| rf"^\s*{SIGNATURE}", # Initial signature | |
| rf"{SIGNATURE}\s*$", # Final signature | |
| r" \[[0-9]+\]|\[[0-9]+\] ", # Citations | |
| r"β\s+[tT]alk - [-a-zA-Z0-9._()\s]+β", | |
| r"==[^=]+==", | |
| r"^::+", | |
| r"^\s*\(UTC\)", | |
| rf"Unblock {IP}", | |
| r"2nd Unblock Request", | |
| r":Category:", | |
| r"File:[^\s]+", | |
| r"\{\|.+\|\}", # Embedded code | |
| # r"\{\{.+\s.+\}\}", # Embedded code | |
| r"^\s+", # Initial whitespace | |
| r"\s+$", # Trailing whitespace | |
| ] | |
| # List of patterns to replaces | |
| REGEX_REPLACE = { | |
| "\n+": "\n", | |
| "\\'": "'", | |
| '""+': '"', | |
| "''+": "'", | |
| # r"(WP|Wikipedia):[^\s]+": "URL", # Wikipedia internal links | |
| r"[^\s]+#[^\s]+": "URL", # Wikipedia internal links | |
| r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,4}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)": "URL", # ULRs | |
| r"([uU]ser_[tT]alk|[tT]alk):[^\s]+": "URL", # Talk links | |
| } | |
| def clean_sentence(sentence): | |
| """Preprocess a sentence using the regex rules""" | |
| for pattern in REGEX_REMOVE: | |
| sentence = re.sub(pattern, "", sentence) | |
| for pattern, repl in REGEX_REPLACE.items(): | |
| sentence = re.sub(pattern, repl, sentence) | |
| return sentence | |
| def make_binary_label(row): | |
| """Make a row label binary by combining all toxicity types""" | |
| for column in TOXIC_COLUMNS: | |
| if row[column] == 1: | |
| return 1 | |
| return 0 | |
| print("Loading original data...") | |
| # Load up the original data | |
| train_df = pd.read_csv("orig_train.csv").set_index("id") | |
| test_text_df = pd.read_csv("orig_test.csv").set_index("id") | |
| test_labels_df = pd.read_csv("orig_test_labels.csv").set_index("id") | |
| # Remove the datapoints which have no label | |
| test_text_df = test_text_df.loc[test_labels_df["toxic"] != -1] | |
| test_labels_df = test_labels_df.loc[test_labels_df["toxic"] != -1] | |
| # Join the test text and labels to make a complete dataset | |
| test_df = test_text_df.join(test_labels_df) | |
| print("Cleaning train split...") | |
| for index, row in tqdm(train_df.iterrows(), total=len(train_df)): | |
| row["comment_text"] = clean_sentence(row["comment_text"]) | |
| print("Cleaning test split...") | |
| for index, row in tqdm(test_df.iterrows(), total=len(test_df)): | |
| row["comment_text"] = clean_sentence(row["comment_text"]) | |
| # Some texts will get reduced to the empty string. Let's remove them first | |
| print("Removing empty texts...") | |
| train_df = train_df.loc[train_df["comment_text"] != ""] | |
| test_df = test_df.loc[test_df["comment_text"] != ""] | |
| # Get rid of any duplicates we made | |
| print("Removing duplicate entries...") | |
| train_df = train_df.drop_duplicates(subset=["comment_text"]) | |
| test_df = test_df.drop_duplicates(subset=["comment_text"]) | |
| print("Creating binary column...") | |
| # Make the new binary column | |
| train_df["label"] = train_df.apply(make_binary_label, axis=1) | |
| test_df["label"] = test_df.apply(make_binary_label, axis=1) | |
| # Remove all other classification columns | |
| train_df = train_df.drop(columns=TOXIC_COLUMNS) | |
| test_df = test_df.drop(columns=TOXIC_COLUMNS) | |
| print("Creating eval split...") | |
| # Shuffle the current train split | |
| train_df = train_df.sample(frac=1, random_state=seed) | |
| # The new size of the train split | |
| train_size = math.floor(len(train_df) * 0.8) | |
| # Separate into train and eval splits | |
| eval_df = train_df[train_size:] | |
| train_df = train_df[:train_size] | |
| # print("Saving to disk...") | |
| with open("train.csv", "w") as f: | |
| train_df.to_csv(f) | |
| with open("validation.csv", "w") as f: | |
| eval_df.to_csv(f) | |
| with open("test.csv", "w") as f: | |
| test_df.to_csv(f) |