File size: 8,700 Bytes
698f70b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import subprocess
import glob
import sys
from tqdm import tqdm

# --- 配置路径 ---
# build_dataset.py 脚本所在的目录
# 你需要根据实际情况填写 build_dataset.py 的路径
BUILD_SCRIPT_DIR = r"D:\DiffSingerDatasets\MakeDiffSinger\acoustic_forced_alignment"
BUILD_SCRIPT_PATH = os.path.join(BUILD_SCRIPT_DIR, "build_dataset.py")

# add_ph_num.py 脚本的完整路径
# *** 请将这里修改为正确的 add_ph_num.py 路径 ***
ADD_SCRIPT_PATH = r"D:\DiffSingerDatasets\MakeDiffSinger\variance-temp-solution\add_ph_num.py"

# batch_infer.py 脚本的完整路径
BATCH_INFER_SCRIPT_PATH = r"D:\DiffSingerDatasets\MakeDiffSinger\SOME\batch_infer.py"

# 已处理的歌手数据根目录 (包含 wav/ 和 TextGrid/)
SOURCE_PROCESSED_ROOT = r"D:\DiffSingerDatasets\m4singer_processed"

# 输出数据集的根目录
OUTPUT_DATASET_ROOT = r"D:\DiffSingerDatasets\m4singer_dataset"

# 字典文件路径 (用于 add_ph_num.py)
DICTIONARY_PATH = r"D:\DiffSingerDatasets\SOFA\dictionary\opencpop-extension.txt"

# 预训练模型 checkpoint 文件路径 (用于 batch_infer.py)
MODEL_CKPT_PATH = r"D:\DiffSingerDatasets\MakeDiffSinger\SOME\pretrained\0119_continuous256_5spk\model_ckpt_steps_100000_simplified.ckpt"

# 需要处理的 CSV 文件名 (build_dataset.py 生成, add_ph_num.py 修改)
CSV_FILENAME = "transcriptions.csv"

# 获取当前正在运行的 Python 解释器的完整路径
PYTHON_EXECUTABLE = sys.executable
print(f"Using Python executable: {PYTHON_EXECUTABLE}")
print("-" * 50) # Use a longer separator

# --- 辅助函数:运行外部命令 ---
def _run_command(command, description, cwd=None):
    """Helper function to run a subprocess command and print output."""
    print(f"\nRunning: {description}")
    print(f"Command: {' '.join(command)}")
    if cwd:
        print(f"Working Directory: {cwd}")
    print("-" * 20) # Separator before command output

    try:
        # Execute the command
        result = subprocess.run(command, capture_output=True, text=True, check=False, cwd=cwd)

        # Print output
        if result.stdout:
            print("--- STDOUT ---")
            print(result.stdout)
        if result.stderr:
            print("--- STDERR ---")
            print(result.stderr)

        # Check return code
        if result.returncode != 0:
            print(f"!!! Command failed: {description} exited with code {result.returncode}")
            return False, result.returncode
        else:
            print(f"--- Command successful: {description} ---")
            return True, result.returncode

    except FileNotFoundError:
        print(f"!!! Error: Script or executable not found: {command[0]}")
        print("Please check if the script paths and Python executable path are correct.")
        return False, -1 # Indicate script not found
    except Exception as e:
        print(f"!!! An unexpected error occurred while running {description}: {e}")
        return False, -2 # Indicate other general error

# --- 主处理函数:处理单个歌手 ---
def process_single_singer(singer_dir, output_root, dictionary_path, model_ckpt_path, python_exec_path):
    """
    为单个歌手目录执行完整的建库流程。

    Args:
        singer_dir (str): 歌手的源数据目录 (e.g., D:\DiffSingerDatasets\m4singer_processed\Alto-1)
        output_root (str): 输出数据集的根目录 (e.g., D:\DiffSingerDatasets\m4singer_dataset)
        dictionary_path (str): 字典文件路径
        model_ckpt_path (str): 模型 checkpoint 文件路径
        python_exec_path (str): 用于执行外部脚本的 Python 解释器路径
    """
    singer_name = os.path.basename(singer_dir) # 获取目录名作为歌手名 (e.g., Alto-1)
    source_wav_dir = os.path.join(singer_dir, "wav")
    source_tg_dir = os.path.join(singer_dir, "TextGrid")

    # 构建输出数据集的目录名,遵循 {声部}={编号}-MAN 格式
    # singer_name 已经是 Alto-1, Bass-2 等格式,所以直接加上 -MAN 即可
    target_dataset_name = f"{singer_name}-MAN"
    target_dataset_path = os.path.join(output_root, target_dataset_name)

    print(f"\n{'='*60}") # Major separator for each singer
    print(f"=== Processing Singer: {singer_name} ===")
    print(f"  Source Wavs: {source_wav_dir}")
    print(f"  Source TextGrids: {source_tg_dir}")
    print(f"  Target Dataset Dir: {target_dataset_path}")
    print(f"{'='*60}\n")

    # 1. 执行 build_dataset.py
    print("\n--- Step 1: Running build_dataset.py ---")
    build_command = [
        python_exec_path,
        BUILD_SCRIPT_PATH,
        "--wavs", source_wav_dir,
        "--tg", source_tg_dir,
        "--dataset", target_dataset_path
    ]
    success, _ = _run_command(build_command, "build_dataset.py")

    if not success:
        print(f"\n!!! Skipping add_ph_num.py and batch_infer.py for {singer_name} due to build_dataset.py failure.")
        return # Stop processing this singer

    # 2. 执行 add_ph_num.py
    print("\n--- Step 2: Running add_ph_num.py ---")
    csv_path = os.path.join(target_dataset_path, CSV_FILENAME)
    if not os.path.exists(csv_path):
        print(f"\n!!! Error: {CSV_FILENAME} not found at {csv_path} after build_dataset.py. Skipping add_ph_num.py and batch_infer.py for {singer_name}.")
        return # Stop processing this singer

    add_command = [
        python_exec_path,
        ADD_SCRIPT_PATH,
        csv_path, # The script expects the CSV path as the first positional argument
        "--dictionary", dictionary_path
    ]
    success, _ = _run_command(add_command, "add_ph_num.py")

    if not success:
        print(f"\n!!! Skipping batch_infer.py for {singer_name} due to add_ph_num.py failure.")
        return # Stop processing this singer

    # 3. 执行 batch_infer.py
    print("\n--- Step 3: Running batch_infer.py (Pitch Inference) ---")
    # Check if model checkpoint exists before attempting inference
    if not os.path.exists(model_ckpt_path):
         print(f"\n!!! Error: Model checkpoint not found at {model_ckpt_path}. Skipping batch_infer.py for {singer_name}.")
         return # Stop processing this singer

    infer_command = [
        python_exec_path,
        BATCH_INFER_SCRIPT_PATH,
        "--model", model_ckpt_path,
        "--dataset", target_dataset_path, # Pass the dataset directory containing updated CSV
        "--overwrite"
    ]
    success, _ = _run_command(infer_command, "batch_infer.py")

    if not success:
        print(f"\n!!! Pitch inference failed for {singer_name}.")
    else:
        print(f"\n=== Successfully processed all steps for Singer: {singer_name} ===")


if __name__ == "__main__":
    # 检查所有必要的脚本和文件是否存在
    if not os.path.exists(BUILD_SCRIPT_PATH):
        print(f"Error: build_dataset.py not found at {BUILD_SCRIPT_PATH}. Exiting.")
        sys.exit(1)
    if not os.path.exists(ADD_SCRIPT_PATH):
        print(f"Error: add_ph_num.py not found at {ADD_SCRIPT_PATH}. Exiting.")
        sys.exit(1)
    if not os.path.exists(BATCH_INFER_SCRIPT_PATH):
        print(f"Error: batch_infer.py not found at {BATCH_INFER_SCRIPT_PATH}. Exiting.")
        sys.exit(1)
    if not os.path.exists(DICTIONARY_PATH):
        print(f"Error: Dictionary file not found at {DICTIONARY_PATH}. Exiting.")
        sys.exit(1)
    # Model checkpoint check is done within the processing function as it's the last step
    # But a warning upfront might be useful
    if not os.path.exists(MODEL_CKPT_PATH):
        print(f"Warning: Model checkpoint not found at {MODEL_CKPT_PATH}. Pitch inference step will be skipped for all singers.")


    # 查找所有歌手目录
    singer_directories = glob.glob(os.path.join(SOURCE_PROCESSED_ROOT, "*"))

    # 过滤出确实是目录的项
    singer_directories = [d for d in singer_directories if os.path.isdir(d)]

    if not singer_directories:
        print(f"No singer directories found in {SOURCE_PROCESSED_ROOT}. Please check the path.")
    else:
        print(f"Found {len(singer_directories)} singer directories to process.")
        print("-" * 50)

        # 使用 tqdm 包装循环以显示进度条
        # Leave=True so the final bar remains after completion, showing total count
        for singer_dir in tqdm(singer_directories, desc="Overall Dataset Building", leave=True):
             # Call the combined processing function for each singer
            process_single_singer(singer_dir, OUTPUT_DATASET_ROOT, DICTIONARY_PATH, MODEL_CKPT_PATH, PYTHON_EXECUTABLE)
            print("\n" + "="*60 + "\n") # Double line separator between singers

        print("\n" + "="*60)
        print("=== Finished processing all singers ===")
        print("="*60)